File size: 13,769 Bytes
5ebc6ac d8d338a ecb89c6 c8f5b0b 5ebc6ac 85337cf 5ebc6ac 85337cf 5ebc6ac a586f3f 5ebc6ac b8d0525 05821ad eb51cd9 cce782e b8d0525 5ebc6ac 85337cf 5ebc6ac 639de20 5ebc6ac 88b1bd2 5ebc6ac 85337cf ecb89c6 5ebc6ac 96e5704 5ebc6ac 96e5704 5ebc6ac 85337cf 5ebc6ac 96e5704 ecb89c6 96e5704 3de74a1 ecb89c6 d0dab28 ecb89c6 d0dab28 ecb89c6 05ddae2 ecb89c6 3de74a1 0a3c221 3de74a1 0a3c221 3de74a1 5ebc6ac 96e5704 ecb89c6 96e5704 ecb89c6 05ddae2 ecb89c6 05ddae2 ecb89c6 05ddae2 ecb89c6 05ddae2 ecb89c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.express as px
import random
import gc
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "dfsnew",
"private_key_id": "2432f6c3771f70a410c5c878d1359869fc9dddc8",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDBNBDU2aJuEr6n\ne0o7pDY8gjg1+g1e3oHlpyY/CHMByZuEwfXewsZYP/TApfr8zxXDNG9X31CloWXH\n6ef8H0h6TjhRppE/2YCUZlbgtvpwlDg+1aKTKY5Lc/L937I6V512mgMDhDmTwX+p\noV0vhPuJnyFy+Fuo+xu8D9A46lhTTIK4EZhHc04SUBxUI3pDdfvuMbjciD/Pskn2\nMwBSEG/FQoe4GYrSmm7jzYdSHItVBakr26xl117m8BrIuceU7IEWrnJGDza8TtTZ\n+4Wp7PY9v6DgVt2+rnnDaF/g7kocLqoj2xWp1eS7OALwmqaIPFljIUkL5AJJiLC1\n+/ve6iwVAgMBAAECggEADTFsPdCvwBL9HGw1nT2BK6AbzQnKfHI2zhMcMD04N0TI\nXygsjT3hM/kIElizOyy7+HS97rLz65+KFvzwx71uIlXxkBfO/txwJJIZeCZeky33\n6kiF3cU+b4YXL4FlRwkhGk55irWuhdm2iUOY3KwYziTE8LgncDJXij/NMPnFtshZ\n/2Dc/7sKLi1tna5tfXr5v4N7LhyFOfHme8ZSZIhnpV+WnFM/VAVghwi+3vfzeV+a\nVgvv+QwRUBF+MYpoW8aDw3Y1jKuKKxcG0qHR1mQQTDK6eAymy28lJ9LfgKkZBLS3\nVEGH8O+gLQj2l8VR8koRxA1FETJ9BnIiV4OF+uLQQQKBgQDyYkeBnpPKnw3MXKgy\nxtpt7hLdrrQiR69PHEvHj9z6b60KTH9jDMKcbCU/ouwbTtLQnvtwta2RoWD/1xk+\n3uaeQv/jOtgKGE+Sa0FvJuDWZwBfUORnyqb+s5G9MpVlqNLLkUmE5myyrDbFdxei\nwzisIjvQxtJDLB3pucTRyd6a1QKBgQDMDoWUfNpQI/up3r0RWVCl3odpwOMnpN0S\nhf8uLyvEvtbcMnpxCQCl+4KWnOiX4GH4N9sZGF8YTPazO2Kd85/GioUoNo5u6vJo\ncxD0BTvg5meyUjfZsmuU620/eVQBa88TRdo3isLmBqUp7SAC+g4vTHpgxn00dRYv\neSfZN0dsQQKBgQDkxR34mVOkyrqbSFj4k/dWCn6D/YDHWiF86ZgcowxO01jff5Q8\nSK7mNKxzg7KVk7Amd+eaWd+YtFh5IOwTCw9gEJy0O7Xs0UVJTTJVVryfoFgZnp/1\n1rAHdjT3/eZELTPILzjU1yeA/Eo11lHYramvzh/mzcFm5RzWnR/HYmFYgQKBgFOy\nbSX/pAgVCkedvc0c5lBymvZMkJ+VJrxPS+Ckpn43jKea6M/uUl7Cb8jZKSoKdgS6\n3FpJvc+Y2eOgKw4AfHuSG5Xn8roaEj23XK/KacoQl130DUZ0wV2+xvuvBz7h+ni8\nQQphFxoEhcBRq7ys1h6ebt+86mQW1ne4aRjWbKxBAoGARA+rBNIC9Z1vyRzMAXfj\nnQ9/wShd/NGpVRNrm7sdUastfoyK8Ip3HkJac3xE1ARpQTvxAz742mdeDxPWI8wZ\nHDsjIrRqGLKMN7tSIoM720y6PY/Tsg89SdY4y0h6M75rrEi4Lv5b7s4EmqAZdfKT\nbEyuT7sCPCLeOX/RLy/lCpA=\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "105107448378741046480",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dfsapps%40dfsnew.iam.gserviceaccount.com",
"universe_domain": "googleapis.com"
}
header= {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) '
'AppleWebKit/537.11 (KHTML, like Gecko) '
'Chrome/23.0.1271.64 Safari/537.11',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3',
'Accept-Encoding': 'none',
'Accept-Language': 'en-US,en;q=0.8',
'Connection': 'keep-alive'}
gc_con = gspread.service_account_from_dict(credentials, scope)
return gc_con
gcservice_account = init_conn()
NBAGetGameData = 'https://docs.google.com/spreadsheets/d/1tRQrF_I5rS7Q0g9vE8NrENDZ2P3_DvtbBZzKEakwOI0/edit#gid=1373653837'
NBABettingModel = 'https://docs.google.com/spreadsheets/d/1WBnvOHQi_zVTGF63efejK5ho02AY00HiYrMHnMJXY1E/edit#gid=1157978351'
game_format = {'Injury and Rotation Adjusted Win %': '{:.2%}'}
percentages_format = {'Playoff Odds': '{:.2%}', 'Division Odds': '{:.2%}', 'Top 4 Seed Odds': '{:.2%}', '1 Seed Odds': '{:.2%}', 'Win 1st Round': '{:.2%}',
'Win 2nd Round': '{:.2%}', 'Win Conference': '{:.2%}', 'Win Title': '{:.2%}', '1': '{:.2%}', '2': '{:.2%}', '3': '{:.2%}',
'4': '{:.2%}', '5': '{:.2%}', '6': '{:.2%}', '7': '{:.2%}', '8': '{:.2%}', '9': '{:.2%}', '10': '{:.2%}', '11': '{:.2%}',
'12': '{:.2%}', '13': '{:.2%}', '14': '{:.2%}', '15': '{:.2%}'}
@st.cache_resource(ttl = 300)
def init_baselines():
sh = gcservice_account.open_by_url(NBABettingModel)
worksheet = sh.worksheet('ExportTable')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
raw_display.replace('', np.nan, inplace=True)
cols_to_check = ['Win %', 'Injury and Rotation Adjusted Win %']
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
raw_display['Team Date'] = raw_display['Team'] + " " + raw_display['Date']
raw_display = raw_display.drop(columns=['Day of Season', 'Team', 'Opp', 'Date Num', 'DR Team', 'In Minutes File'])
game_model = raw_display[raw_display['Injury and Rotation Adjusted Win %'] != ""]
just_win_probs = game_model[['Team Date', 'Date', 'Time', 'Acro', 'Opponent', 'Injury and Rotation Adjusted Win %', 'Total Proj', 'Projected Points', 'Injury and Rotation Adjusted Expected Margin']]
worksheet = sh.worksheet('SeasonExport')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
raw_display.replace('', 0, inplace=True)
cols_to_check = ['Playoff Odds', 'Division Odds', 'Top 4 Seed Odds', '1 Seed Odds', 'Win 1st Round', 'Win 2nd Round', 'Win Conference', 'Win Title',
'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15']
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
season_model = raw_display[raw_display['Team'] != ""]
title_sims = season_model[['Team', 'Conference', 'Division', 'Power Rank', 'Team PointMarginPerGame', 'SeasonSimLookup', 'Win Projection Now',
'Playoff Odds', 'Division Odds', 'Top 4 Seed Odds', '1 Seed Odds', 'Win 1st Round', 'Win 2nd Round', 'Win Conference', 'Win Title']]
seed_probs = season_model[['Team', 'Conference', 'Division', 'Avg Seed', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15']]
sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1540807349')
worksheet = sh.worksheet('Arturo Props')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
timestamp = raw_display['Date'].head(1)[0]
return game_model, season_model, seed_probs, title_sims, just_win_probs, timestamp
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
game_model, season_model, seed_probs, title_sims, just_win_probs, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
tab1, tab2 = st.tabs(["Game Betting Model", "Season and Futures"])
with tab1:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
game_model, season_model, seed_probs, title_sims, just_win_probs, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
view_var1 = st.radio("Would you like to view math and stuff or just the win percentages and margins?", ('Just win probs', 'Gimme details'), key='view_var1')
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
if split_var1 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = game_model['Acro'].unique(), key='team_var1')
elif split_var1 == 'All':
team_var1 = game_model.Acro.values.tolist()
date_split_var1 = st.radio("Would you like to view all Dates or specific ones?", ('All', 'Specific Dates'), key='date_split_var1')
if date_split_var1 == 'Specific Dates':
date_var1 = st.multiselect('Which Dates would you like to include in the tables?', options = game_model['Date'].unique(), key='date_var1')
elif date_split_var1 == 'All':
date_var1 = game_model.Date.values.tolist()
with col2:
if view_var1 == 'Just win probs':
game_display = just_win_probs[just_win_probs['Acro'].isin(team_var1)]
game_display = game_display[game_display['Date'].isin(date_var1)]
game_display = game_display.set_index('Team Date')
st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
st.download_button(
label="Export Game Model",
data=convert_df_to_csv(game_model),
file_name='AmericanNumbers_Game_Model_export.csv',
mime='text/csv',
)
elif view_var1 == 'Gimme details':
game_display = game_model[game_model['Acro'].isin(team_var1)]
game_display = game_display[game_display['Date'].isin(date_var1)]
game_display = game_display.set_index('Team Date')
st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
st.download_button(
label="Export Game Model",
data=convert_df_to_csv(game_model),
file_name='AmericanNumbers_Game_Model_export.csv',
mime='text/csv',
)
with tab2:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
game_model, season_model, seed_probs, title_sims, just_win_probs, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
view_var2 = st.radio("Would you like to view title odds and win projections or seeding probabilities?", ('Win Odds', 'Seed Probabilities'), key='view_var2')
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = season_model['Team'].unique(), key='team_var2')
elif split_var2 == 'All':
team_var2 = season_model.Team.values.tolist()
conf_var2 = st.radio("Would you like to view all conferences or specific ones?", ('All', 'Specific Conferences'), key='conf_var2')
if conf_var2 == 'Specific Conferences':
conf_choice_var2 = st.multiselect('Which conferences would you like to include in the tables?', options = season_model['Conference'].unique(), key='conf_choice_var2')
elif conf_var2 == 'All':
conf_choice_var2 = season_model.Conference.values.tolist()
div_var2 = st.radio("Would you like to view all divisions or specific ones?", ('All', 'Specific Divisions'), key='div_var2')
if div_var2 == 'Specific Divisions':
div_choice_var2 = st.multiselect('Which divisions would you like to include in the tables?', options = season_model['Division'].unique(), key='div_choice_var2')
elif div_var2 == 'All':
div_choice_var2 = season_model.Division.values.tolist()
with col2:
if view_var2 == 'Win Odds':
title_sims = title_sims[title_sims['Team'].isin(team_var2)]
title_sims = title_sims[title_sims['Conference'].isin(conf_choice_var2)]
title_sims = title_sims[title_sims['Division'].isin(div_choice_var2)]
season_display = title_sims.set_index('Team')
season_display = season_display.sort_values(by=['Win Projection Now'], ascending=False)
st.dataframe(season_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Futures Model",
data=convert_df_to_csv(title_sims),
file_name='AmericanNumbers_Season_Futures.csv',
mime='text/csv',
)
elif view_var2 == 'Seed Probabilities':
seed_probs = seed_probs[seed_probs['Team'].isin(team_var2)]
seed_probs = seed_probs[seed_probs['Conference'].isin(conf_choice_var2)]
seed_probs = seed_probs[seed_probs['Division'].isin(div_choice_var2)]
season_display = seed_probs.set_index('Team')
season_display = season_display.sort_values(by=['Avg Seed'], ascending=True)
st.dataframe(season_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Futures Model",
data=convert_df_to_csv(seed_probs),
file_name='AmericanNumbers_Season_Futures.csv',
mime='text/csv',
) |