Multichem commited on
Commit
aa8c500
·
1 Parent(s): 1878852

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -131
app.py CHANGED
@@ -47,6 +47,7 @@ def init_conn():
47
  gcservice_account = init_conn()
48
 
49
  NBAGetGameData = 'https://docs.google.com/spreadsheets/d/1tRQrF_I5rS7Q0g9vE8NrENDZ2P3_DvtbBZzKEakwOI0/edit#gid=1373653837'
 
50
  NBABettingModel = 'https://docs.google.com/spreadsheets/d/1WBnvOHQi_zVTGF63efejK5ho02AY00HiYrMHnMJXY1E/edit#gid=1157978351'
51
 
52
  game_format = {'Injury and Rotation Adjusted Win %': '{:.2%}'}
@@ -58,146 +59,64 @@ percentages_format = {'Playoff Odds': '{:.2%}', 'Division Odds': '{:.2%}', 'Top
58
 
59
  @st.cache_resource(ttl = 300)
60
  def init_baselines():
61
- sh = gcservice_account.open_by_url(NBABettingModel)
62
 
63
- worksheet = sh.worksheet('ExportTable')
64
  raw_display = pd.DataFrame(worksheet.get_values())
65
  raw_display.columns = raw_display.iloc[0]
66
  raw_display = raw_display[1:]
67
  raw_display = raw_display.reset_index(drop=True)
68
  raw_display.replace('', np.nan, inplace=True)
69
- cols_to_check = ['Win %', 'Injury and Rotation Adjusted Win %']
70
- raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
71
- raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
72
- raw_display['Team Date'] = raw_display['Team'] + " " + raw_display['Date']
73
- raw_display = raw_display.drop(columns=['Day of Season', 'Team', 'Opp', 'Date Num', 'DR Team', 'In Minutes File'])
74
- game_model = raw_display[raw_display['Injury and Rotation Adjusted Win %'] != ""]
75
- just_win_probs = game_model[['Team Date', 'Date', 'Time', 'Acro', 'Opponent', 'Injury and Rotation Adjusted Win %', 'Total Proj', 'Projected Points', 'Injury and Rotation Adjusted Expected Margin']]
 
 
 
 
 
 
76
 
 
77
 
78
- worksheet = sh.worksheet('SeasonExport')
79
- raw_display = pd.DataFrame(worksheet.get_values())
80
- raw_display.columns = raw_display.iloc[0]
81
- raw_display = raw_display[1:]
82
- raw_display = raw_display.reset_index(drop=True)
83
- raw_display.replace('', 0, inplace=True)
84
- cols_to_check = ['Playoff Odds', 'Division Odds', 'Top 4 Seed Odds', '1 Seed Odds', 'Win 1st Round', 'Win 2nd Round', 'Win Conference', 'Win Title',
85
- '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15']
86
- raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
87
- raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
88
- season_model = raw_display[raw_display['Team'] != ""]
89
- title_sims = season_model[['Team', 'Conference', 'Division', 'Power Rank', 'Team PointMarginPerGame', 'SeasonSimLookup', 'Win Projection Now',
90
- 'Playoff Odds', 'Division Odds', 'Top 4 Seed Odds', '1 Seed Odds', 'Win 1st Round', 'Win 2nd Round', 'Win Conference', 'Win Title']]
91
- seed_probs = season_model[['Team', 'Conference', 'Division', 'Avg Seed', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15']]
92
-
93
- sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1540807349')
94
-
95
- worksheet = sh.worksheet('Arturo Props')
96
- raw_display = pd.DataFrame(worksheet.get_all_records())
97
- raw_display.replace('', np.nan, inplace=True)
98
- timestamp = raw_display['Date'].head(1)[0]
99
-
100
- return game_model, season_model, seed_probs, title_sims, just_win_probs, timestamp
101
 
102
  def convert_df_to_csv(df):
103
  return df.to_csv().encode('utf-8')
104
 
105
- game_model, season_model, seed_probs, title_sims, just_win_probs, timestamp = init_baselines()
106
- t_stamp = f"Last Update: " + str(timestamp) + f" CST"
107
-
108
- tab1, tab2 = st.tabs(["Game Betting Model", "Season and Futures"])
109
-
110
- with tab1:
111
- st.info(t_stamp)
112
- col1, col2 = st.columns([1, 9])
113
- with col1:
114
- if st.button("Reset Data", key='reset1'):
115
- st.cache_data.clear()
116
- game_model, season_model, seed_probs, title_sims, just_win_probs, timestamp = init_baselines()
117
- t_stamp = f"Last Update: " + str(timestamp) + f" CST"
118
- view_var1 = st.radio("Would you like to view math and stuff or just the win percentages and margins?", ('Just win probs', 'Gimme details'), key='view_var1')
119
- split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
120
- if split_var1 == 'Specific Teams':
121
- team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = game_model['Acro'].unique(), key='team_var1')
122
- elif split_var1 == 'All':
123
- team_var1 = game_model.Acro.values.tolist()
124
- date_split_var1 = st.radio("Would you like to view all Dates or specific ones?", ('All', 'Specific Dates'), key='date_split_var1')
125
- if date_split_var1 == 'Specific Dates':
126
- date_var1 = st.multiselect('Which Dates would you like to include in the tables?', options = game_model['Date'].unique(), key='date_var1')
127
- elif date_split_var1 == 'All':
128
- date_var1 = game_model.Date.values.tolist()
129
- with col2:
130
- if view_var1 == 'Just win probs':
131
- game_display = just_win_probs[just_win_probs['Acro'].isin(team_var1)]
132
- game_display = game_display[game_display['Date'].isin(date_var1)]
133
- game_display = game_display.set_index('Team Date')
134
- st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
135
- st.download_button(
136
- label="Export Game Model",
137
- data=convert_df_to_csv(game_model),
138
- file_name='AmericanNumbers_Game_Model_export.csv',
139
- mime='text/csv',
140
- )
141
- elif view_var1 == 'Gimme details':
142
- game_display = game_model[game_model['Acro'].isin(team_var1)]
143
- game_display = game_display[game_display['Date'].isin(date_var1)]
144
- game_display = game_display.set_index('Team Date')
145
- st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
146
- st.download_button(
147
- label="Export Game Model",
148
- data=convert_df_to_csv(game_model),
149
- file_name='AmericanNumbers_Game_Model_export.csv',
150
- mime='text/csv',
151
- )
152
-
153
- with tab2:
154
- st.info(t_stamp)
155
- col1, col2 = st.columns([1, 9])
156
- with col1:
157
- if st.button("Reset Data", key='reset2'):
158
- st.cache_data.clear()
159
- game_model, season_model, seed_probs, title_sims, just_win_probs, timestamp = init_baselines()
160
- t_stamp = f"Last Update: " + str(timestamp) + f" CST"
161
- view_var2 = st.radio("Would you like to view title odds and win projections or seeding probabilities?", ('Win Odds', 'Seed Probabilities'), key='view_var2')
162
- split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
163
- if split_var2 == 'Specific Teams':
164
- team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = season_model['Team'].unique(), key='team_var2')
165
- elif split_var2 == 'All':
166
- team_var2 = season_model.Team.values.tolist()
167
- conf_var2 = st.radio("Would you like to view all conferences or specific ones?", ('All', 'Specific Conferences'), key='conf_var2')
168
- if conf_var2 == 'Specific Conferences':
169
- conf_choice_var2 = st.multiselect('Which conferences would you like to include in the tables?', options = season_model['Conference'].unique(), key='conf_choice_var2')
170
- elif conf_var2 == 'All':
171
- conf_choice_var2 = season_model.Conference.values.tolist()
172
- div_var2 = st.radio("Would you like to view all divisions or specific ones?", ('All', 'Specific Divisions'), key='div_var2')
173
- if div_var2 == 'Specific Divisions':
174
- div_choice_var2 = st.multiselect('Which divisions would you like to include in the tables?', options = season_model['Division'].unique(), key='div_choice_var2')
175
- elif div_var2 == 'All':
176
- div_choice_var2 = season_model.Division.values.tolist()
177
- with col2:
178
- if view_var2 == 'Win Odds':
179
- title_sims = title_sims[title_sims['Team'].isin(team_var2)]
180
- title_sims = title_sims[title_sims['Conference'].isin(conf_choice_var2)]
181
- title_sims = title_sims[title_sims['Division'].isin(div_choice_var2)]
182
- season_display = title_sims.set_index('Team')
183
- season_display = season_display.sort_values(by=['Win Projection Now'], ascending=False)
184
- st.dataframe(season_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
185
- st.download_button(
186
- label="Export Futures Model",
187
- data=convert_df_to_csv(title_sims),
188
- file_name='AmericanNumbers_Season_Futures.csv',
189
- mime='text/csv',
190
- )
191
- elif view_var2 == 'Seed Probabilities':
192
- seed_probs = seed_probs[seed_probs['Team'].isin(team_var2)]
193
- seed_probs = seed_probs[seed_probs['Conference'].isin(conf_choice_var2)]
194
- seed_probs = seed_probs[seed_probs['Division'].isin(div_choice_var2)]
195
- season_display = seed_probs.set_index('Team')
196
- season_display = season_display.sort_values(by=['Avg Seed'], ascending=True)
197
- st.dataframe(season_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
198
- st.download_button(
199
- label="Export Futures Model",
200
- data=convert_df_to_csv(seed_probs),
201
- file_name='AmericanNumbers_Season_Futures.csv',
202
- mime='text/csv',
203
- )
 
47
  gcservice_account = init_conn()
48
 
49
  NBAGetGameData = 'https://docs.google.com/spreadsheets/d/1tRQrF_I5rS7Q0g9vE8NrENDZ2P3_DvtbBZzKEakwOI0/edit#gid=1373653837'
50
+ NCAAMensBasketball = 'https://docs.google.com/spreadsheets/d/1flWwlx1T7Xu68AjOkeq7u4Y7nWzukZzKTEI17RJ6MfE/edit#gid=1975368022'
51
  NBABettingModel = 'https://docs.google.com/spreadsheets/d/1WBnvOHQi_zVTGF63efejK5ho02AY00HiYrMHnMJXY1E/edit#gid=1157978351'
52
 
53
  game_format = {'Injury and Rotation Adjusted Win %': '{:.2%}'}
 
59
 
60
  @st.cache_resource(ttl = 300)
61
  def init_baselines():
62
+ sh = gcservice_account.open_by_url(NCAAMensBasketball)
63
 
64
+ worksheet = sh.worksheet('ActiveBets')
65
  raw_display = pd.DataFrame(worksheet.get_values())
66
  raw_display.columns = raw_display.iloc[0]
67
  raw_display = raw_display[1:]
68
  raw_display = raw_display.reset_index(drop=True)
69
  raw_display.replace('', np.nan, inplace=True)
70
+ game_model = raw_display[['#', 'date', 'gameid', 'HomeTeam', 'HomeDiv', 'HomeConf', 'AwayTeam', 'AwayDiv', 'AwayConf',
71
+ 'total', 'mlHome', 'mlAway', 'spreadHome', 'spreadAway', 'booksid', 'inconf', 'Neutral', 'Home Team PM',
72
+ 'Road Team PM', 'HCA', 'Home Team Margin', 'Home Team Win', 'Home ML Break even %',
73
+ 'Road ML Break Even %', 'Home Win Edge', 'Road Win Edge', 'Moneyline Bet Rec', 'Home Spread Edge',
74
+ 'Road Team Edge', 'Home Spread HKelly', 'Away Spread HKelly', 'Spread Bet Rec', 'Edge for Spread']]
75
+ data_cols = ['#', 'gameid', 'total', 'mlHome', 'mlAway', 'spreadHome', 'spreadAway', 'Neutral', 'Home Team PM',
76
+ 'Road Team PM', 'HCA', 'Home Team Margin', 'Home Team Win', 'Home ML Break even %',
77
+ 'Road ML Break Even %', 'Home Win Edge', 'Road Win Edge', 'Home Spread Edge',
78
+ 'Road Team Edge', 'Home Spread HKelly', 'Away Spread HKelly', 'Edge for Spread']
79
+ game_model[data_cols] = game_model[data_cols].apply(pd.to_numeric, errors='coerce')
80
+ game_model = game_model[game_model['Injury and Rotation Adjusted Win %'] != ""]
81
+ just_win_probs = game_model[['#', 'date', 'gameid', 'HomeTeam', 'AwayTeam', 'total', 'mlHome', 'mlAway', 'spreadHome', 'spreadAway', 'booksid',
82
+ 'Home Win Edge', 'Road Win Edge', 'Moneyline Bet Rec', 'Home Spread Edge', 'Road Team Edge', 'Spread Bet Rec']]
83
 
84
+ timestamp = raw_display['Time'].head(1)[0]
85
 
86
+ return game_model, just_win_probs, timestamp
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  def convert_df_to_csv(df):
89
  return df.to_csv().encode('utf-8')
90
 
91
+ game_model, just_win_probs, timestamp = init_baselines()
92
+ t_stamp = f"Last Update: " + str(timestamp) + f" EST"
93
+
94
+
95
+ st.info(t_stamp)
96
+ col1, col2 = st.columns([1, 9])
97
+ with col1:
98
+ if st.button("Reset Data", key='reset1'):
99
+ st.cache_data.clear()
100
+ game_model, just_win_probs, timestamp = init_baselines()
101
+ t_stamp = f"Last Update: " + str(timestamp) + f" EST"
102
+ view_var1 = st.radio("Would you like to view math and stuff or just the win percentages and margins?", ('Just win probs', 'Gimme details'), key='view_var1')
103
+
104
+ with col2:
105
+ if view_var1 == 'Just win probs':
106
+ game_display = just_win_probs
107
+ st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
108
+ st.download_button(
109
+ label="Export Game Model",
110
+ data=convert_df_to_csv(game_model),
111
+ file_name='AmericanNumbers_Game_Model_export.csv',
112
+ mime='text/csv',
113
+ )
114
+ elif view_var1 == 'Gimme details':
115
+ game_display = game_model
116
+ st.dataframe(game_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
117
+ st.download_button(
118
+ label="Export Game Model",
119
+ data=convert_df_to_csv(game_model),
120
+ file_name='AmericanNumbers_NCAA_BBall_export.csv',
121
+ mime='text/csv',
122
+ )