File size: 7,911 Bytes
ca38258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f15270
ca38258
 
 
 
 
a5417e9
 
ca38258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5417e9
 
ca38258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d790c
ca38258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f15270
 
f5cf6d2
ca38258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f697f
a5417e9
ca38258
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread

scope = ['https://www.googleapis.com/auth/spreadsheets',
          "https://www.googleapis.com/auth/drive"]

credentials = {
  "type": "service_account",
  "project_id": "sheets-api-connect-378620",
  "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
  "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
  "client_id": "106625872877651920064",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}

gspreadcon = gspread.service_account_from_dict(credentials)

st.set_page_config(layout="wide")

roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
              '120+%': '{:.2%}','10x%': '{:.2%}','11x%': '{:.2%}','12x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}', 'CPT_Own': '{.2%}'}

odds_format = {'Odds': '{:.2%}'}

stat_format = {'Odds%': '{:.2%}'}

map_proj_format = {'Win%': '{:.2%}'}

master_hold = 'https://docs.google.com/spreadsheets/d/1dOXsbeWbvWjRyohsEEDXOiWji4-1R1J6E-Lu2CSM9AM/edit#gid=928272897'

@st.cache_resource(ttl=600)
def pull_baselines():
    sh = gspreadcon.open_by_url(master_hold)
    
    worksheet = sh.worksheet('Overall_Vegas')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display.loc[raw_display['Team'] != ""]
    odds_table = raw_display[['Team', 'Vegas', 'Odds', 'Games']]
    
    worksheet = sh.worksheet('Overall_ROO')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    overall_roo = raw_display.loc[raw_display['Player'] != ""]
    
    worksheet = sh.worksheet('Win_ROO')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    win_roo = raw_display.loc[raw_display['Player'] != ""]
    
    worksheet = sh.worksheet('Loss_ROO')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    loss_roo = raw_display.loc[raw_display['Player'] != ""]
    
    worksheet = sh.worksheet('3_map_Proj')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display.loc[raw_display['Player'] != ""]
    map_proj_3 = raw_display[['Player', 'Team', 'Opponent', 'Odds', 'Win%', 'Avg Kills', 'Avg Deaths', 'Proj_Kills', 'Proj_Deaths']]
    data_cols = map_proj_3.columns.drop(['Player', 'Team', 'Opponent', 'Win%'])
    map_proj_3[data_cols] = map_proj_3[data_cols].apply(pd.to_numeric, errors='coerce')
    
    worksheet = sh.worksheet('Timestamp')
    timestamp = worksheet.acell('A1').value

    return odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"

tab1, tab2, tab3 = st.tabs(["COD Odds Tables", "COD Range of Outcomes", "COD 3-map projections"])

with tab1:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset1'):
              st.cache_data.clear()
              odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    odds_display = odds_table
    st.dataframe(odds_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(odds_format, precision=2), use_container_width = True)
    st.download_button(
        label="Export Tables",
        data=convert_df_to_csv(odds_display),
        file_name='COD_Odds_Tables_export.csv',
        mime='text/csv',
    )

with tab2:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset2'):
             st.cache_data.clear()
             odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
             t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    model_choice = st.radio("What table would you like to display?", ('Overall', 'Wins', 'Losses'), key='roo_table')
    team_var1 = st.multiselect('View specific team?', options = overall_roo['Team'].unique(), key = 'roo_teamvar')
    if model_choice == 'Overall':
      hold_display = overall_roo
    elif model_choice == 'Wins':
      hold_display = win_roo
    elif model_choice == 'Losses':
      hold_display = loss_roo
    hold_display['Cpt_Own'] = (hold_display['Own']) * ((100 - (100-hold_display['Own'])))
    cpt_own_norm = 100 / hold_display['Cpt_Own'].sum()
    hold_display['Cpt_Own'] = (hold_display['Cpt_Own'] * cpt_own_norm)
    display = hold_display.set_index('Player')
    export_display = display
    export_display['Position'] = "FLEX"
    if team_var1:
              display = display[display['Team'].isin(team_var1)]
    st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), use_container_width = True)
    st.download_button(
        label="Export Range of Outcomes",
        data=convert_df_to_csv(export_display),
        file_name='CSGO_ROO_export.csv',
        mime='text/csv',
    )

with tab3:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset3'):
              st.cache_data.clear()
              odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    team_var2 = st.multiselect('View specific team?', options = map_proj_3['Team'].unique(), key = 'stat_teamvar')
    map_stat_display = map_proj_3
    if team_var2:
          map_stat_display = map_stat_display[display['Team'].isin(team_var2)]
    st.dataframe(map_stat_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(map_proj_format, precision=2), use_container_width = True)
    st.download_button(
        label="Export Projections",
        data=convert_df_to_csv(map_stat_display),
        file_name='COD_Projections_export.csv',
        mime='text/csv',
    )