COD_DFS_Models / app.py
Multichem's picture
Update app.py
f5cf6d2 verified
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gspreadcon = gspread.service_account_from_dict(credentials)
st.set_page_config(layout="wide")
roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
'120+%': '{:.2%}','10x%': '{:.2%}','11x%': '{:.2%}','12x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}', 'CPT_Own': '{.2%}'}
odds_format = {'Odds': '{:.2%}'}
stat_format = {'Odds%': '{:.2%}'}
map_proj_format = {'Win%': '{:.2%}'}
master_hold = 'https://docs.google.com/spreadsheets/d/1dOXsbeWbvWjRyohsEEDXOiWji4-1R1J6E-Lu2CSM9AM/edit#gid=928272897'
@st.cache_resource(ttl=600)
def pull_baselines():
sh = gspreadcon.open_by_url(master_hold)
worksheet = sh.worksheet('Overall_Vegas')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display.loc[raw_display['Team'] != ""]
odds_table = raw_display[['Team', 'Vegas', 'Odds', 'Games']]
worksheet = sh.worksheet('Overall_ROO')
raw_display = pd.DataFrame(worksheet.get_all_records())
overall_roo = raw_display.loc[raw_display['Player'] != ""]
worksheet = sh.worksheet('Win_ROO')
raw_display = pd.DataFrame(worksheet.get_all_records())
win_roo = raw_display.loc[raw_display['Player'] != ""]
worksheet = sh.worksheet('Loss_ROO')
raw_display = pd.DataFrame(worksheet.get_all_records())
loss_roo = raw_display.loc[raw_display['Player'] != ""]
worksheet = sh.worksheet('3_map_Proj')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display.loc[raw_display['Player'] != ""]
map_proj_3 = raw_display[['Player', 'Team', 'Opponent', 'Odds', 'Win%', 'Avg Kills', 'Avg Deaths', 'Proj_Kills', 'Proj_Deaths']]
data_cols = map_proj_3.columns.drop(['Player', 'Team', 'Opponent', 'Win%'])
map_proj_3[data_cols] = map_proj_3[data_cols].apply(pd.to_numeric, errors='coerce')
worksheet = sh.worksheet('Timestamp')
timestamp = worksheet.acell('A1').value
return odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
tab1, tab2, tab3 = st.tabs(["COD Odds Tables", "COD Range of Outcomes", "COD 3-map projections"])
with tab1:
st.info(t_stamp)
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
odds_display = odds_table
st.dataframe(odds_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(odds_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(odds_display),
file_name='COD_Odds_Tables_export.csv',
mime='text/csv',
)
with tab2:
st.info(t_stamp)
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
model_choice = st.radio("What table would you like to display?", ('Overall', 'Wins', 'Losses'), key='roo_table')
team_var1 = st.multiselect('View specific team?', options = overall_roo['Team'].unique(), key = 'roo_teamvar')
if model_choice == 'Overall':
hold_display = overall_roo
elif model_choice == 'Wins':
hold_display = win_roo
elif model_choice == 'Losses':
hold_display = loss_roo
hold_display['Cpt_Own'] = (hold_display['Own']) * ((100 - (100-hold_display['Own'])))
cpt_own_norm = 100 / hold_display['Cpt_Own'].sum()
hold_display['Cpt_Own'] = (hold_display['Cpt_Own'] * cpt_own_norm)
display = hold_display.set_index('Player')
export_display = display
export_display['Position'] = "FLEX"
if team_var1:
display = display[display['Team'].isin(team_var1)]
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Range of Outcomes",
data=convert_df_to_csv(export_display),
file_name='CSGO_ROO_export.csv',
mime='text/csv',
)
with tab3:
st.info(t_stamp)
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
odds_table, overall_roo, win_roo, timestamp, loss_roo, map_proj_3 = pull_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
team_var2 = st.multiselect('View specific team?', options = map_proj_3['Team'].unique(), key = 'stat_teamvar')
map_stat_display = map_proj_3
if team_var2:
map_stat_display = map_stat_display[display['Team'].isin(team_var2)]
st.dataframe(map_stat_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(map_proj_format, precision=2), use_container_width = True)
st.download_button(
label="Export Projections",
data=convert_df_to_csv(map_stat_display),
file_name='COD_Projections_export.csv',
mime='text/csv',
)