Multichem commited on
Commit
2edf337
·
verified ·
1 Parent(s): 0ee5ebe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +136 -223
app.py CHANGED
@@ -40,68 +40,48 @@ def init_conn():
40
  client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
41
  db = client["testing_db"]
42
 
43
- NFL_Data = st.secrets['NFL_Data']
44
 
45
  gc = gspread.service_account_from_dict(credentials)
46
  gc2 = gspread.service_account_from_dict(credentials2)
47
 
48
- return gc, gc2, db, NFL_Data
49
 
50
- gcservice_account, gcservice_account2, db, NFL_Data = init_conn()
51
 
52
  percentages_format = {'Exposure': '{:.2%}'}
53
  freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
54
- dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
55
- fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
56
 
57
  @st.cache_data(ttl = 599)
58
  def init_DK_seed_frames():
59
 
60
- collection = db["DK_NFL_seed_frame"]
61
  cursor = collection.find()
62
 
63
  raw_display = pd.DataFrame(list(cursor))
64
- raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
65
  DK_seed = raw_display.to_numpy()
66
 
67
  return DK_seed
68
 
69
- @st.cache_data(ttl = 599)
70
- def init_FD_seed_frames():
71
-
72
- collection = db["FD_NFL_seed_frame"]
73
- cursor = collection.find()
74
-
75
- raw_display = pd.DataFrame(list(cursor))
76
- raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
77
- FD_seed = raw_display.to_numpy()
78
-
79
- return FD_seed
80
-
81
  @st.cache_data(ttl = 599)
82
  def init_baselines():
83
  try:
84
- sh = gcservice_account.open_by_url(NFL_Data)
85
  except:
86
- sh = gcservice_account2.open_by_url(NFL_Data)
87
 
88
- worksheet = sh.worksheet('DK_ROO')
89
  load_display = pd.DataFrame(worksheet.get_all_records())
90
  load_display.replace('', np.nan, inplace=True)
91
  load_display['STDev'] = load_display['Median'] / 4
92
  load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
93
 
94
  dk_raw = load_display.dropna(subset=['Median'])
95
-
96
- worksheet = sh.worksheet('FD_ROO')
97
- load_display = pd.DataFrame(worksheet.get_all_records())
98
- load_display.replace('', np.nan, inplace=True)
99
- load_display['STDev'] = load_display['Median'] / 4
100
- load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
101
-
102
- fd_raw = load_display.dropna(subset=['Median'])
103
 
104
- return dk_raw, fd_raw
105
 
106
  @st.cache_data
107
  def convert_df(array):
@@ -110,14 +90,14 @@ def convert_df(array):
110
 
111
  @st.cache_data
112
  def calculate_DK_value_frequencies(np_array):
113
- unique, counts = np.unique(np_array[:, :9], return_counts=True)
114
  frequencies = counts / len(np_array) # Normalize by the number of rows
115
  combined_array = np.column_stack((unique, frequencies))
116
  return combined_array
117
 
118
  @st.cache_data
119
  def calculate_FD_value_frequencies(np_array):
120
- unique, counts = np.unique(np_array[:, :9], return_counts=True)
121
  frequencies = counts / len(np_array) # Normalize by the number of rows
122
  combined_array = np.column_stack((unique, frequencies))
123
  return combined_array
@@ -147,7 +127,7 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
147
 
148
  sample_arrays = sample_arrays1
149
 
150
- final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
151
  best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
152
  Sim_Winners.append(best_lineup)
153
  SimVar += 1
@@ -155,8 +135,7 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
155
  return Sim_Winners
156
 
157
  DK_seed = init_DK_seed_frames()
158
- FD_seed = init_FD_seed_frames()
159
- dk_raw, fd_raw = init_baselines()
160
 
161
  tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
162
  with tab2:
@@ -167,11 +146,10 @@ with tab2:
167
  for key in st.session_state.keys():
168
  del st.session_state[key]
169
  DK_seed = init_DK_seed_frames()
170
- FD_seed = init_FD_seed_frames()
171
- dk_raw, fd_raw = init_baselines()
172
 
173
  slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
174
- site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
175
  if site_var1 == 'Draftkings':
176
  raw_baselines = dk_raw
177
  column_names = dk_columns
@@ -184,33 +162,16 @@ with tab2:
184
 
185
  stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
186
  if stack_var1 == 'Specific Stack Sizes':
187
- stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
188
  elif stack_var1 == 'Full Slate':
189
- stack_var2 = [5, 4, 3, 2, 1, 0]
190
-
191
- elif site_var1 == 'Fanduel':
192
- raw_baselines = fd_raw
193
- column_names = fd_columns
194
-
195
- team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
196
- if team_var1 == 'Specific Teams':
197
- team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
198
- elif team_var1 == 'Full Slate':
199
- team_var2 = fd_raw.Team.values.tolist()
200
-
201
- stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
202
- if stack_var1 == 'Specific Stack Sizes':
203
- stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
204
- elif stack_var1 == 'Full Slate':
205
- stack_var2 = [5, 4, 3, 2, 1, 0]
206
 
207
-
208
  if st.button("Prepare data export", key='data_export'):
209
  data_export = st.session_state.working_seed.copy()
210
  st.download_button(
211
  label="Export optimals set",
212
  data=convert_df(data_export),
213
- file_name='NFL_optimals_export.csv',
214
  mime='text/csv',
215
  )
216
 
@@ -218,24 +179,13 @@ with tab2:
218
  if st.button("Load Data", key='load_data'):
219
  if site_var1 == 'Draftkings':
220
  if 'working_seed' in st.session_state:
221
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
222
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
223
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
224
  elif 'working_seed' not in st.session_state:
225
  st.session_state.working_seed = DK_seed.copy()
226
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
227
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
228
- st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
229
-
230
- elif site_var1 == 'Fanduel':
231
- if 'working_seed' in st.session_state:
232
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
233
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
234
- st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
235
- elif 'working_seed' not in st.session_state:
236
- st.session_state.working_seed = FD_seed.copy()
237
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
238
- st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
239
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
240
 
241
  with st.container():
@@ -250,16 +200,12 @@ with tab1:
250
  for key in st.session_state.keys():
251
  del st.session_state[key]
252
  DK_seed = init_DK_seed_frames()
253
- FD_seed = init_FD_seed_frames()
254
- dk_raw, fd_raw = init_baselines()
255
  sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
256
- sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
257
  if sim_site_var1 == 'Draftkings':
258
  raw_baselines = dk_raw
259
  column_names = dk_columns
260
- elif sim_site_var1 == 'Fanduel':
261
- raw_baselines = fd_raw
262
- column_names = fd_columns
263
 
264
  contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
265
  if contest_var1 == 'Small':
@@ -296,8 +242,6 @@ with tab1:
296
  }
297
  Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
298
  Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
299
-
300
- #st.table(Sim_Winner_Frame)
301
 
302
  # Initial setup
303
  Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
@@ -322,8 +266,6 @@ with tab1:
322
  else:
323
  if sim_site_var1 == 'Draftkings':
324
  st.session_state.working_seed = DK_seed.copy()
325
- elif sim_site_var1 == 'Fanduel':
326
- st.session_state.working_seed = FD_seed.copy()
327
  maps_dict = {
328
  'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
329
  'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
@@ -334,8 +276,6 @@ with tab1:
334
  }
335
  Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
336
  Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
337
-
338
- #st.table(Sim_Winner_Frame)
339
 
340
  # Initial setup
341
  Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
@@ -359,10 +299,7 @@ with tab1:
359
  freq_copy = st.session_state.Sim_Winner_Display
360
 
361
  if sim_site_var1 == 'Draftkings':
362
- freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:9].values, return_counts=True)),
363
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
364
- elif sim_site_var1 == 'Fanduel':
365
- freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:9].values, return_counts=True)),
366
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
367
  freq_working['Freq'] = freq_working['Freq'].astype(int)
368
  freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
@@ -374,119 +311,95 @@ with tab1:
374
  st.session_state.player_freq = freq_working.copy()
375
 
376
  if sim_site_var1 == 'Draftkings':
377
- qb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
378
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
379
- elif sim_site_var1 == 'Fanduel':
380
- qb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
381
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
382
- qb_working['Freq'] = qb_working['Freq'].astype(int)
383
- qb_working['Position'] = qb_working['Player'].map(maps_dict['Pos_map'])
384
- qb_working['Salary'] = qb_working['Player'].map(maps_dict['Salary_map'])
385
- qb_working['Proj Own'] = qb_working['Player'].map(maps_dict['Own_map']) / 100
386
- qb_working['Exposure'] = qb_working['Freq']/(1000)
387
- qb_working['Edge'] = qb_working['Exposure'] - qb_working['Proj Own']
388
- qb_working['Team'] = qb_working['Player'].map(maps_dict['Team_map'])
389
- st.session_state.qb_freq = qb_working.copy()
390
 
391
  if sim_site_var1 == 'Draftkings':
392
- rbwrte_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:7].values, return_counts=True)),
393
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
394
- elif sim_site_var1 == 'Fanduel':
395
- rbwrte_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:7].values, return_counts=True)),
396
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
397
- rbwrte_working['Freq'] = rbwrte_working['Freq'].astype(int)
398
- rbwrte_working['Position'] = rbwrte_working['Player'].map(maps_dict['Pos_map'])
399
- rbwrte_working['Salary'] = rbwrte_working['Player'].map(maps_dict['Salary_map'])
400
- rbwrte_working['Proj Own'] = rbwrte_working['Player'].map(maps_dict['Own_map']) / 100
401
- rbwrte_working['Exposure'] = rbwrte_working['Freq']/(1000)
402
- rbwrte_working['Edge'] = rbwrte_working['Exposure'] - rbwrte_working['Proj Own']
403
- rbwrte_working['Team'] = rbwrte_working['Player'].map(maps_dict['Team_map'])
404
- st.session_state.rbwrte_freq = rbwrte_working.copy()
405
 
406
  if sim_site_var1 == 'Draftkings':
407
- rb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:3].values, return_counts=True)),
408
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
409
- elif sim_site_var1 == 'Fanduel':
410
- rb_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:3].values, return_counts=True)),
411
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
412
- rb_working['Freq'] = rb_working['Freq'].astype(int)
413
- rb_working['Position'] = rb_working['Player'].map(maps_dict['Pos_map'])
414
- rb_working['Salary'] = rb_working['Player'].map(maps_dict['Salary_map'])
415
- rb_working['Proj Own'] = rb_working['Player'].map(maps_dict['Own_map']) / 100
416
- rb_working['Exposure'] = rb_working['Freq']/(1000)
417
- rb_working['Edge'] = rb_working['Exposure'] - rb_working['Proj Own']
418
- rb_working['Team'] = rb_working['Player'].map(maps_dict['Team_map'])
419
- st.session_state.rb_freq = rb_working.copy()
420
 
421
  if sim_site_var1 == 'Draftkings':
422
- wr_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,3:6].values, return_counts=True)),
423
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
424
- elif sim_site_var1 == 'Fanduel':
425
- wr_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,3:6].values, return_counts=True)),
426
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
427
- wr_working['Freq'] = wr_working['Freq'].astype(int)
428
- wr_working['Position'] = wr_working['Player'].map(maps_dict['Pos_map'])
429
- wr_working['Salary'] = wr_working['Player'].map(maps_dict['Salary_map'])
430
- wr_working['Proj Own'] = wr_working['Player'].map(maps_dict['Own_map']) / 100
431
- wr_working['Exposure'] = wr_working['Freq']/(1000)
432
- wr_working['Edge'] = wr_working['Exposure'] - wr_working['Proj Own']
433
- wr_working['Team'] = wr_working['Player'].map(maps_dict['Team_map'])
434
- st.session_state.wr_freq = wr_working.copy()
435
 
436
  if sim_site_var1 == 'Draftkings':
437
- te_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,6:7].values, return_counts=True)),
438
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
439
- elif sim_site_var1 == 'Fanduel':
440
- te_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,6:7].values, return_counts=True)),
441
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
442
- te_working['Freq'] = te_working['Freq'].astype(int)
443
- te_working['Position'] = te_working['Player'].map(maps_dict['Pos_map'])
444
- te_working['Salary'] = te_working['Player'].map(maps_dict['Salary_map'])
445
- te_working['Proj Own'] = te_working['Player'].map(maps_dict['Own_map']) / 100
446
- te_working['Exposure'] = te_working['Freq']/(1000)
447
- te_working['Edge'] = te_working['Exposure'] - te_working['Proj Own']
448
- te_working['Team'] = te_working['Player'].map(maps_dict['Team_map'])
449
- st.session_state.te_freq = te_working.copy()
450
 
451
  if sim_site_var1 == 'Draftkings':
452
- flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
453
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
454
- elif sim_site_var1 == 'Fanduel':
455
- flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
456
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
457
- flex_working['Freq'] = flex_working['Freq'].astype(int)
458
- flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
459
- flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
460
- flex_working['Proj Own'] = flex_working['Player'].map(maps_dict['Own_map']) / 100
461
- flex_working['Exposure'] = flex_working['Freq']/(1000)
462
- flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
463
- flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
464
- st.session_state.flex_freq = flex_working.copy()
465
 
466
  if sim_site_var1 == 'Draftkings':
467
- dst_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,8:9].values, return_counts=True)),
468
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
469
- elif sim_site_var1 == 'Fanduel':
470
- dst_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,8:9].values, return_counts=True)),
471
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
472
- dst_working['Freq'] = dst_working['Freq'].astype(int)
473
- dst_working['Position'] = dst_working['Player'].map(maps_dict['Pos_map'])
474
- dst_working['Salary'] = dst_working['Player'].map(maps_dict['Salary_map'])
475
- dst_working['Proj Own'] = dst_working['Player'].map(maps_dict['Own_map']) / 100
476
- dst_working['Exposure'] = dst_working['Freq']/(1000)
477
- dst_working['Edge'] = dst_working['Exposure'] - dst_working['Proj Own']
478
- dst_working['Team'] = dst_working['Player'].map(maps_dict['Team_map'])
479
- st.session_state.dst_freq = dst_working.copy()
480
-
481
- if sim_site_var1 == 'Draftkings':
482
- team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,11:12].values, return_counts=True)),
483
- columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
484
- elif sim_site_var1 == 'Fanduel':
485
- team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,11:12].values, return_counts=True)),
486
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
487
  team_working['Freq'] = team_working['Freq'].astype(int)
 
 
 
488
  team_working['Exposure'] = team_working['Freq']/(1000)
 
 
489
  st.session_state.team_freq = team_working.copy()
 
 
 
 
 
 
 
490
 
491
  with st.container():
492
  if st.button("Reset Sim", key='reset_sim'):
@@ -509,12 +422,12 @@ with tab1:
509
  st.download_button(
510
  label="Export Full Frame",
511
  data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
512
- file_name='MLB_consim_export.csv',
513
  mime='text/csv',
514
  )
515
 
516
  with st.container():
517
- tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB-WR-TE Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures', 'Team Exposures'])
518
  with tab1:
519
  if 'player_freq' in st.session_state:
520
 
@@ -527,90 +440,90 @@ with tab1:
527
  key='overall'
528
  )
529
  with tab2:
530
- if 'qb_freq' in st.session_state:
531
 
532
- st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
533
  st.download_button(
534
  label="Export Exposures",
535
- data=st.session_state.qb_freq.to_csv().encode('utf-8'),
536
- file_name='qb_freq.csv',
537
  mime='text/csv',
538
- key='qb'
539
  )
540
  with tab3:
541
- if 'rbwrte_freq' in st.session_state:
542
 
543
- st.dataframe(st.session_state.rbwrte_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
544
  st.download_button(
545
  label="Export Exposures",
546
- data=st.session_state.rbwrte_freq.to_csv().encode('utf-8'),
547
- file_name='rbwrte_freq.csv',
548
  mime='text/csv',
549
- key='rbwrte'
550
  )
551
  with tab4:
552
- if 'rb_freq' in st.session_state:
553
 
554
- st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
555
  st.download_button(
556
  label="Export Exposures",
557
- data=st.session_state.rb_freq.to_csv().encode('utf-8'),
558
- file_name='rb_freq.csv',
559
  mime='text/csv',
560
- key='rb'
561
  )
562
  with tab5:
563
- if 'wr_freq' in st.session_state:
564
 
565
- st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
566
  st.download_button(
567
  label="Export Exposures",
568
- data=st.session_state.wr_freq.to_csv().encode('utf-8'),
569
- file_name='wr_freq.csv',
570
  mime='text/csv',
571
- key='wr'
572
  )
573
  with tab6:
574
- if 'te_freq' in st.session_state:
575
 
576
- st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
577
  st.download_button(
578
  label="Export Exposures",
579
- data=st.session_state.te_freq.to_csv().encode('utf-8'),
580
- file_name='te_freq.csv',
581
  mime='text/csv',
582
- key='te'
583
  )
584
  with tab7:
585
- if 'flex_freq' in st.session_state:
586
 
587
- st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
588
  st.download_button(
589
  label="Export Exposures",
590
- data=st.session_state.flex_freq.to_csv().encode('utf-8'),
591
- file_name='flex_freq.csv',
592
  mime='text/csv',
593
- key='flex'
594
  )
595
  with tab8:
596
- if 'dst_freq' in st.session_state:
597
 
598
- st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
599
  st.download_button(
600
  label="Export Exposures",
601
- data=st.session_state.dst_freq.to_csv().encode('utf-8'),
602
- file_name='dst_freq.csv',
603
  mime='text/csv',
604
- key='dst'
605
  )
606
  with tab9:
607
- if 'team_freq' in st.session_state:
608
 
609
- st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
610
  st.download_button(
611
  label="Export Exposures",
612
- data=st.session_state.team_freq.to_csv().encode('utf-8'),
613
- file_name='team_freq.csv',
614
  mime='text/csv',
615
- key='team'
616
  )
 
40
  client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
41
  db = client["testing_db"]
42
 
43
+ LOL_Data = st.secrets['LOL_Data']
44
 
45
  gc = gspread.service_account_from_dict(credentials)
46
  gc2 = gspread.service_account_from_dict(credentials2)
47
 
48
+ return gc, gc2, db, LOL_Data
49
 
50
+ gcservice_account, gcservice_account2, db, LOL_Data = init_conn()
51
 
52
  percentages_format = {'Exposure': '{:.2%}'}
53
  freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
54
+ dk_columns = ['CPT', 'TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
55
+ fd_columns = ['CPT', 'TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
56
 
57
  @st.cache_data(ttl = 599)
58
  def init_DK_seed_frames():
59
 
60
+ collection = db["League_of_Legends_DK_seed_frame"]
61
  cursor = collection.find()
62
 
63
  raw_display = pd.DataFrame(list(cursor))
64
+ raw_display = raw_display[['CPT', 'TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
65
  DK_seed = raw_display.to_numpy()
66
 
67
  return DK_seed
68
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  @st.cache_data(ttl = 599)
70
  def init_baselines():
71
  try:
72
+ sh = gcservice_account.open_by_url(LOL_Data)
73
  except:
74
+ sh = gcservice_account2.open_by_url(LOL_Data)
75
 
76
+ worksheet = sh.worksheet('ROO')
77
  load_display = pd.DataFrame(worksheet.get_all_records())
78
  load_display.replace('', np.nan, inplace=True)
79
  load_display['STDev'] = load_display['Median'] / 4
80
  load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
81
 
82
  dk_raw = load_display.dropna(subset=['Median'])
 
 
 
 
 
 
 
 
83
 
84
+ return dk_raw
85
 
86
  @st.cache_data
87
  def convert_df(array):
 
90
 
91
  @st.cache_data
92
  def calculate_DK_value_frequencies(np_array):
93
+ unique, counts = np.unique(np_array[:, :6], return_counts=True)
94
  frequencies = counts / len(np_array) # Normalize by the number of rows
95
  combined_array = np.column_stack((unique, frequencies))
96
  return combined_array
97
 
98
  @st.cache_data
99
  def calculate_FD_value_frequencies(np_array):
100
+ unique, counts = np.unique(np_array[:, :6], return_counts=True)
101
  frequencies = counts / len(np_array) # Normalize by the number of rows
102
  combined_array = np.column_stack((unique, frequencies))
103
  return combined_array
 
127
 
128
  sample_arrays = sample_arrays1
129
 
130
+ final_array = sample_arrays[sample_arrays[:, 7].argsort()[::-1]]
131
  best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
132
  Sim_Winners.append(best_lineup)
133
  SimVar += 1
 
135
  return Sim_Winners
136
 
137
  DK_seed = init_DK_seed_frames()
138
+ dk_raw = init_baselines()
 
139
 
140
  tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
141
  with tab2:
 
146
  for key in st.session_state.keys():
147
  del st.session_state[key]
148
  DK_seed = init_DK_seed_frames()
149
+ dk_raw = init_baselines()
 
150
 
151
  slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
152
+ site_var1 = st.radio("What site are you working with?", ('Draftkings'))
153
  if site_var1 == 'Draftkings':
154
  raw_baselines = dk_raw
155
  column_names = dk_columns
 
162
 
163
  stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
164
  if stack_var1 == 'Specific Stack Sizes':
165
+ stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
166
  elif stack_var1 == 'Full Slate':
167
+ stack_var2 = [4, 3, 2, 1, 0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
 
169
  if st.button("Prepare data export", key='data_export'):
170
  data_export = st.session_state.working_seed.copy()
171
  st.download_button(
172
  label="Export optimals set",
173
  data=convert_df(data_export),
174
+ file_name='LOL_optimals_export.csv',
175
  mime='text/csv',
176
  )
177
 
 
179
  if st.button("Load Data", key='load_data'):
180
  if site_var1 == 'Draftkings':
181
  if 'working_seed' in st.session_state:
182
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
183
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
184
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
185
  elif 'working_seed' not in st.session_state:
186
  st.session_state.working_seed = DK_seed.copy()
187
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
188
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
 
 
 
 
 
 
 
 
 
 
 
189
  st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
190
 
191
  with st.container():
 
200
  for key in st.session_state.keys():
201
  del st.session_state[key]
202
  DK_seed = init_DK_seed_frames()
203
+ dk_raw = init_baselines()
 
204
  sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
205
+ sim_site_var1 = st.radio("What site are you working with?", ('Draftkings'), key='sim_site_var1')
206
  if sim_site_var1 == 'Draftkings':
207
  raw_baselines = dk_raw
208
  column_names = dk_columns
 
 
 
209
 
210
  contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
211
  if contest_var1 == 'Small':
 
242
  }
243
  Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
244
  Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
 
 
245
 
246
  # Initial setup
247
  Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
 
266
  else:
267
  if sim_site_var1 == 'Draftkings':
268
  st.session_state.working_seed = DK_seed.copy()
 
 
269
  maps_dict = {
270
  'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
271
  'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
 
276
  }
277
  Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
278
  Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
 
 
279
 
280
  # Initial setup
281
  Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
 
299
  freq_copy = st.session_state.Sim_Winner_Display
300
 
301
  if sim_site_var1 == 'Draftkings':
302
+ freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:6].values, return_counts=True)),
 
 
 
303
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
304
  freq_working['Freq'] = freq_working['Freq'].astype(int)
305
  freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
 
311
  st.session_state.player_freq = freq_working.copy()
312
 
313
  if sim_site_var1 == 'Draftkings':
314
+ cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
315
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
316
+ cpt_working['Freq'] = cpt_working['Freq'].astype(int)
317
+ cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
318
+ cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map'])
319
+ cpt_working['Proj Own'] = cpt_working['Player'].map(maps_dict['Own_map']) / 100
320
+ cpt_working['Exposure'] = cpt_working['Freq']/(1000)
321
+ cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
322
+ cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
323
+ st.session_state.cpt_freq = cpt_working.copy()
 
 
 
324
 
325
  if sim_site_var1 == 'Draftkings':
326
+ top_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:2].values, return_counts=True)),
 
 
 
327
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
328
+ top_working['Freq'] = top_working['Freq'].astype(int)
329
+ top_working['Position'] = top_working['Player'].map(maps_dict['Pos_map'])
330
+ top_working['Salary'] = top_working['Player'].map(maps_dict['Salary_map'])
331
+ top_working['Proj Own'] = top_working['Player'].map(maps_dict['Own_map']) / 100
332
+ top_working['Exposure'] = top_working['Freq']/(1000)
333
+ top_working['Edge'] = top_working['Exposure'] - top_working['Proj Own']
334
+ top_working['Team'] = top_working['Player'].map(maps_dict['Team_map'])
335
+ st.session_state.top_freq = top_working.copy()
336
 
337
  if sim_site_var1 == 'Draftkings':
338
+ jng_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,2:3].values, return_counts=True)),
 
 
 
339
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
340
+ jng_working['Freq'] = jng_working['Freq'].astype(int)
341
+ jng_working['Position'] = jng_working['Player'].map(maps_dict['Pos_map'])
342
+ jng_working['Salary'] = jng_working['Player'].map(maps_dict['Salary_map'])
343
+ jng_working['Proj Own'] = jng_working['Player'].map(maps_dict['Own_map']) / 100
344
+ jng_working['Exposure'] = jng_working['Freq']/(1000)
345
+ jng_working['Edge'] = jng_working['Exposure'] - jng_working['Proj Own']
346
+ jng_working['Team'] = jng_working['Player'].map(maps_dict['Team_map'])
347
+ st.session_state.jng_freq = jng_working.copy()
348
 
349
  if sim_site_var1 == 'Draftkings':
350
+ mid_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,3:4].values, return_counts=True)),
351
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
352
+ mid_working['Freq'] = mid_working['Freq'].astype(int)
353
+ mid_working['Position'] = mid_working['Player'].map(maps_dict['Pos_map'])
354
+ mid_working['Salary'] = mid_working['Player'].map(maps_dict['Salary_map'])
355
+ mid_working['Proj Own'] = mid_working['Player'].map(maps_dict['Own_map']) / 100
356
+ mid_working['Exposure'] = mid_working['Freq']/(1000)
357
+ mid_working['Edge'] = mid_working['Exposure'] - mid_working['Proj Own']
358
+ mid_working['Team'] = mid_working['Player'].map(maps_dict['Team_map'])
359
+ st.session_state.mid_freq = mid_working.copy()
 
 
 
360
 
361
  if sim_site_var1 == 'Draftkings':
362
+ adc_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,4:5].values, return_counts=True)),
 
 
 
363
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
364
+ adc_working['Freq'] = adc_working['Freq'].astype(int)
365
+ adc_working['Position'] = adc_working['Player'].map(maps_dict['Pos_map'])
366
+ adc_working['Salary'] = adc_working['Player'].map(maps_dict['Salary_map'])
367
+ adc_working['Proj Own'] = adc_working['Player'].map(maps_dict['Own_map']) / 100
368
+ adc_working['Exposure'] = adc_working['Freq']/(1000)
369
+ adc_working['Edge'] = adc_working['Exposure'] - adc_working['Proj Own']
370
+ adc_working['Team'] = adc_working['Player'].map(maps_dict['Team_map'])
371
+ st.session_state.adc_freq = adc_working.copy()
372
 
373
  if sim_site_var1 == 'Draftkings':
374
+ sup_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,5:6].values, return_counts=True)),
 
 
 
375
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
376
+ sup_working['Freq'] = sup_working['Freq'].astype(int)
377
+ sup_working['Position'] = sup_working['Player'].map(maps_dict['Pos_map'])
378
+ sup_working['Salary'] = sup_working['Player'].map(maps_dict['Salary_map'])
379
+ sup_working['Proj Own'] = sup_working['Player'].map(maps_dict['Own_map']) / 100
380
+ sup_working['Exposure'] = sup_working['Freq']/(1000)
381
+ sup_working['Edge'] = sup_working['Exposure'] - sup_working['Proj Own']
382
+ sup_working['Team'] = sup_working['Player'].map(maps_dict['Team_map'])
383
+ st.session_state.sup_freq = sup_working.copy()
384
 
385
  if sim_site_var1 == 'Draftkings':
386
+ team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,6:7].values, return_counts=True)),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
388
  team_working['Freq'] = team_working['Freq'].astype(int)
389
+ team_working['Position'] = team_working['Player'].map(maps_dict['Pos_map'])
390
+ team_working['Salary'] = team_working['Player'].map(maps_dict['Salary_map'])
391
+ team_working['Proj Own'] = team_working['Player'].map(maps_dict['Own_map']) / 100
392
  team_working['Exposure'] = team_working['Freq']/(1000)
393
+ team_working['Edge'] = team_working['Exposure'] - team_working['Proj Own']
394
+ team_working['Team'] = team_working['Player'].map(maps_dict['Team_map'])
395
  st.session_state.team_freq = team_working.copy()
396
+
397
+ if sim_site_var1 == 'Draftkings':
398
+ stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
399
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
400
+ stack_working['Freq'] = stack_working['Freq'].astype(int)
401
+ stack_working['Exposure'] = stack_working['Freq']/(1000)
402
+ st.session_state.stack_freq = stack_working.copy()
403
 
404
  with st.container():
405
  if st.button("Reset Sim", key='reset_sim'):
 
422
  st.download_button(
423
  label="Export Full Frame",
424
  data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
425
+ file_name='LOL_consim_export.csv',
426
  mime='text/csv',
427
  )
428
 
429
  with st.container():
430
+ tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs(['Overall Exposures', 'CPT Exposures', 'TOP Exposures', 'JNG Exposures', 'MID Exposures', 'ADC Exposures', 'SUP Exposures', 'Team Exposures', 'Stack Exposures'])
431
  with tab1:
432
  if 'player_freq' in st.session_state:
433
 
 
440
  key='overall'
441
  )
442
  with tab2:
443
+ if 'cpt_freq' in st.session_state:
444
 
445
+ st.dataframe(st.session_state.cpt_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
446
  st.download_button(
447
  label="Export Exposures",
448
+ data=st.session_state.cpt_freq.to_csv().encode('utf-8'),
449
+ file_name='cpt_freq.csv',
450
  mime='text/csv',
451
+ key='cpt'
452
  )
453
  with tab3:
454
+ if 'top_freq' in st.session_state:
455
 
456
+ st.dataframe(st.session_state.top_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
457
  st.download_button(
458
  label="Export Exposures",
459
+ data=st.session_state.top_freq.to_csv().encode('utf-8'),
460
+ file_name='top_freq.csv',
461
  mime='text/csv',
462
+ key='top'
463
  )
464
  with tab4:
465
+ if 'jng_freq' in st.session_state:
466
 
467
+ st.dataframe(st.session_state.jng_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
468
  st.download_button(
469
  label="Export Exposures",
470
+ data=st.session_state.jng_freq.to_csv().encode('utf-8'),
471
+ file_name='jng_freq.csv',
472
  mime='text/csv',
473
+ key='jng'
474
  )
475
  with tab5:
476
+ if 'mid_freq' in st.session_state:
477
 
478
+ st.dataframe(st.session_state.mid_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
479
  st.download_button(
480
  label="Export Exposures",
481
+ data=st.session_state.mid_freq.to_csv().encode('utf-8'),
482
+ file_name='mid_freq.csv',
483
  mime='text/csv',
484
+ key='mid'
485
  )
486
  with tab6:
487
+ if 'adc_freq' in st.session_state:
488
 
489
+ st.dataframe(st.session_state.adc_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
490
  st.download_button(
491
  label="Export Exposures",
492
+ data=st.session_state.adc_freq.to_csv().encode('utf-8'),
493
+ file_name='adc_freq.csv',
494
  mime='text/csv',
495
+ key='adc'
496
  )
497
  with tab7:
498
+ if 'sup_freq' in st.session_state:
499
 
500
+ st.dataframe(st.session_state.sup_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
501
  st.download_button(
502
  label="Export Exposures",
503
+ data=st.session_state.sup_freq.to_csv().encode('utf-8'),
504
+ file_name='sup_freq.csv',
505
  mime='text/csv',
506
+ key='sup'
507
  )
508
  with tab8:
509
+ if 'team_freq' in st.session_state:
510
 
511
+ st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
512
  st.download_button(
513
  label="Export Exposures",
514
+ data=st.session_state.team_freq.to_csv().encode('utf-8'),
515
+ file_name='team_freq.csv',
516
  mime='text/csv',
517
+ key='team'
518
  )
519
  with tab9:
520
+ if 'stack_freq' in st.session_state:
521
 
522
+ st.dataframe(st.session_state.stack_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
523
  st.download_button(
524
  label="Export Exposures",
525
+ data=st.session_state.stack_freq.to_csv().encode('utf-8'),
526
+ file_name='stack_freq.csv',
527
  mime='text/csv',
528
+ key='stack'
529
  )