File size: 42,148 Bytes
7ec6c72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af1611
9912dc6
7ec6c72
 
 
 
 
9912dc6
7ec6c72
 
 
 
 
 
 
 
 
 
 
 
9912dc6
7ec6c72
 
 
 
 
 
238c526
 
7ec6c72
9912dc6
 
 
 
7ec6c72
6ad9bdc
 
 
 
 
f794315
 
 
 
 
6ad9bdc
7ec6c72
6ad9bdc
7ec6c72
6ad9bdc
7ec6c72
 
 
 
 
 
 
 
6ad9bdc
7ec6c72
 
238c526
7ec6c72
 
 
5141f45
7ec6c72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad9bdc
7ec6c72
 
9912dc6
7ec6c72
9912dc6
 
 
7ec6c72
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad9bdc
7ec6c72
 
9912dc6
7ec6c72
9912dc6
 
 
7ec6c72
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad9bdc
7ec6c72
 
 
 
 
 
 
 
 
 
9912dc6
7ec6c72
 
9912dc6
7ec6c72
 
 
 
 
 
 
 
 
 
 
 
 
9912dc6
7ec6c72
9912dc6
7ec6c72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f794315
7ec6c72
 
 
 
 
 
 
 
 
f794315
 
 
9edbb54
f794315
 
9edbb54
f794315
 
 
 
 
 
 
a631610
 
7ec6c72
 
 
 
 
 
 
9912dc6
9edbb54
7ec6c72
 
 
 
 
 
 
9912dc6
9edbb54
7ec6c72
 
 
 
 
 
9eb164a
 
9edbb54
9eb164a
 
 
 
 
 
 
 
9edbb54
9eb164a
 
 
 
 
 
 
 
9edbb54
9eb164a
 
 
 
 
 
7ec6c72
9912dc6
9edbb54
7ec6c72
 
 
 
 
 
 
9912dc6
9edbb54
7ec6c72
 
 
 
 
 
9eb164a
 
9edbb54
9eb164a
 
 
 
 
 
7ec6c72
 
 
 
 
 
 
 
 
 
 
9eb164a
 
7ec6c72
 
9eb164a
 
 
 
7ec6c72
 
 
 
 
 
 
 
9eb164a
7ec6c72
 
 
 
 
 
9eb164a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ec6c72
 
 
 
 
 
9eb164a
7ec6c72
 
 
 
 
 
9eb164a
7ec6c72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad9bdc
 
fb17caa
6ad9bdc
60d806f
6ad9bdc
 
 
fb17caa
 
 
 
 
 
 
 
 
2b3aed8
fb17caa
2b3aed8
fb17caa
 
 
0a2472d
fb17caa
 
6ad9bdc
 
2b3aed8
fb17caa
6ad9bdc
60d806f
6ad9bdc
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.figure_factory as ff

scope = ['https://www.googleapis.com/auth/spreadsheets',
          "https://www.googleapis.com/auth/drive"]

credentials = {
  "type": "service_account",
  "project_id": "sheets-api-connect-378620",
  "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
  "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
  "client_id": "106625872877651920064",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}

gc = gspread.service_account_from_dict(credentials)

st.set_page_config(layout="wide")

game_format = {'Win Percentage': '{:.2%}','Cover Spread Percentage': '{:.2%}', 'First Inning Lead Percentage': '{:.2%}',
              'Fifth Inning Lead Percentage': '{:.2%}'}
american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}

master_hold = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'

@st.cache_resource(ttl = 300)
def init_baselines():
          sh = gc.open_by_url(master_hold)
          worksheet = sh.worksheet('Pitcher_Stats')
          props_frame_hold = pd.DataFrame(worksheet.get_all_records())
          props_frame_hold.rename(columns={"Names": "Player"}, inplace = True)
          props_frame_hold = props_frame_hold[['Player', 'Team', 'BB', 'Hits', 'HRs', 'ERs', 'Ks', 'Outs', 'Fantasy', 'FD_Fantasy', 'PrizePicks']]
          pitcher_stats = props_frame_hold.drop_duplicates(subset='Player')
          
          worksheet = sh.worksheet('Timestamp')
          raw_stamp = worksheet.acell('a1').value
          
          t_stamp = f"Last update was at {raw_stamp}"
          
          worksheet = sh.worksheet('Hitter_Stats')
          props_frame_hold = pd.DataFrame(worksheet.get_all_records())
          props_frame_hold.rename(columns={"Names": "Player"}, inplace = True)
          props_frame_hold = props_frame_hold[['Player', 'Team', 'Walks', 'Steals', 'Hits', 'Singles', 'Doubles', 'HRs', 'RBIs', 'Runs', 'Fantasy', 'FD_Fantasy', 'PrizePicks']]
          props_frame_hold['Total Bases'] = props_frame_hold['Singles'] + (props_frame_hold['Doubles'] * 2) + (props_frame_hold['HRs'] * 4)
          props_frame_hold['Hits + Runs + RBIs'] = props_frame_hold['Hits'] + props_frame_hold['Runs'] + props_frame_hold['RBIs']
          hitter_stats = props_frame_hold.drop_duplicates(subset='Player')
          
          worksheet = sh.worksheet('Game_Betting_Model')
          team_frame = pd.DataFrame(worksheet.get_all_records())
          team_frame = team_frame.drop_duplicates(subset='Names')
          team_frame['Win Percentage'] = team_frame['Win Percentage'].str.replace('%', '').astype('float')/100
          team_frame['Cover Spread Percentage'] = team_frame['Cover Spread Percentage'].str.replace('%', '').astype('float')/100
          team_frame['ML_Value'] = team_frame['ML_Value'].str.replace('%', '').astype('float')/100
          team_frame['Spread_Value'] = team_frame['Spread_Value'].str.replace('%', '').astype('float')/100
          
          worksheet = sh.worksheet('prop_frame')
          raw_display = pd.DataFrame(worksheet.get_all_records())
          raw_display.replace('', np.nan, inplace=True)
          prop_frame = raw_display.dropna(subset='Team')
          
          worksheet = sh.worksheet('Prop_results')
          raw_display = pd.DataFrame(worksheet.get_all_records())
          raw_display.replace('', np.nan, inplace=True)
          betsheet_frame = raw_display.dropna(subset='proj')
          
          worksheet = sh.worksheet('Pick6_ingest')
          raw_display = pd.DataFrame(worksheet.get_all_records())
          raw_display.replace('', np.nan, inplace=True)
          pick_frame = raw_display.dropna(subset='Player')
          
          return pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame, t_stamp

pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame, t_stamp = init_baselines()

tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "Pitcher Prop Projections", "Hitter Prop Projections", "Player Prop Simulations", "Stat Specific Simulations", "Bet Sheet"])

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

with tab1:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset1'):
              st.cache_data.clear()
              pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame, t_stamp = init_baselines()
    line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
    if line_var1 == 'Percentage':
        team_frame = team_frame[['Names', 'Game', 'Moneyline', 'Win Percentage', 'ML_Value', 'Spread', 'Cover Spread Percentage', 'Spread_Value', 'Avg Score', 'Game Total', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage']]
        team_frame = team_frame.set_index('Names')
        st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
    if line_var1 == 'American':
        team_frame = team_frame[['Names', 'Game', 'Moneyline', 'American ML', 'ML_Value', 'Spread', 'American Cover', 'Spread_Value', 'Avg Score', 'Game Total', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage']]
        team_frame.rename(columns={"American ML": "Win Percentage", "American Cover": "Cover Spread Percentage"}, inplace = True)
        team_frame = team_frame.set_index('Names')
        st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(american_format, precision=2), use_container_width = True)
    
    st.download_button(
        label="Export Team Model",
        data=convert_df_to_csv(team_frame),
        file_name='MLB_team_betting_export.csv',
        mime='text/csv',
        key='team_export',
    )

with tab2:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset2'):
              st.cache_data.clear()
              pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame, t_stamp = init_baselines()
    split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
    if split_var1 == 'Specific Teams':
        team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = pitcher_stats['Team'].unique(), key='team_var1')
    elif split_var1 == 'All':
        team_var1 = pitcher_stats.Team.values.tolist()
    pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(team_var1)]
    pitcher_frame = pitcher_stats.set_index('Player')
    pitcher_frame = pitcher_frame.sort_values(by='Ks', ascending=False)
    st.dataframe(pitcher_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    st.download_button(
        label="Export Prop Model",
        data=convert_df_to_csv(pitcher_frame),
        file_name='MLB_pitcher_prop_export.csv',
        mime='text/csv',
        key='pitcher_prop_export',
    )

with tab3:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset3'):
              st.cache_data.clear()
              pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame, t_stamp = init_baselines()
    split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
    if split_var2 == 'Specific Teams':
        team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = hitter_stats['Team'].unique(), key='team_var2')
    elif split_var2 == 'All':
        team_var2 = hitter_stats.Team.values.tolist()
    hitter_stats = hitter_stats[hitter_stats['Team'].isin(team_var2)]
    hitter_frame = hitter_stats.set_index('Player')
    hitter_frame = hitter_frame.sort_values(by='Hits + Runs + RBIs', ascending=False)
    st.dataframe(hitter_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    st.download_button(
        label="Export Prop Model",
        data=convert_df_to_csv(hitter_frame),
        file_name='MLB_hitter_prop_export.csv',
        mime='text/csv',
        key='hitter_prop_export',
    )

with tab4:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset4'):
              st.cache_data.clear()
              pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame, t_stamp = init_baselines()
    col1, col2 = st.columns([1, 5])
    
    with col2:
        df_hold_container = st.empty()
        info_hold_container = st.empty()
        plot_hold_container = st.empty()
    
    with col1:
        prop_group_var = st.selectbox('What kind of props are you simulating?', options = ['Pitchers', 'Hitters'])
        if prop_group_var == 'Pitchers':
            player_check = st.selectbox('Select player to simulate props', options = pitcher_stats['Player'].unique())
            prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Strikeouts', 'Walks', 'Hits', 'Homeruns', 'Earned Runs', 'Outs', 'Fantasy', 'FD_Fantasy', 'PrizePicks'])
        elif prop_group_var == 'Hitters':
            player_check = st.selectbox('Select player to simulate props', options = hitter_stats['Player'].unique())
            prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Total Bases', 'Walks', 'Steals', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'RBIs', 'Runs', 'Hits + Runs + RBIs', 'Fantasy', 'FD_Fantasy', 'PrizePicks'])
        
        ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
        prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 5.5, step = .5)
        line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1000, max_value = 1000, value = -150, step = 1)
        line_var = line_var + 1

        if st.button('Simulate Prop'):
            with col2:
                   
                    with df_hold_container.container():

                        if prop_group_var == 'Pitchers':
                            df = pitcher_stats
                        elif prop_group_var == 'Hitters':
                            df = hitter_stats

                        total_sims = 1000

                        df.replace("", 0, inplace=True)

                        player_var = df.loc[df['Player'] == player_check]
                        player_var = player_var.reset_index()

                        if prop_group_var == 'Pitchers':
                            if prop_type_var == "Walks":
                                df['Median'] = df['BB']
                            elif prop_type_var == "Hits":
                                df['Median'] = df['Hits']
                            elif prop_type_var == "Homeruns":
                                df['Median'] = df['HRs']
                            elif prop_type_var == "Earned Runs":
                                df['Median'] = df['ERs']
                            elif prop_type_var == "Strikeouts":
                                df['Median'] = df['Ks']
                            elif prop_type_var == "Outs":
                                df['Median'] = df['Outs']
                            elif prop_type_var == "Fantasy":
                                df['Median'] = df['Fantasy']
                            elif prop_type_var == "FD_Fantasy":
                                df['Median'] = df['FD_Fantasy']
                            elif prop_type_var == "PrizePicks":
                                df['Median'] = df['PrizePicks']
                        elif prop_group_var == 'Hitters':
                            if prop_type_var == "Walks":
                                df['Median'] = df['Walks']
                            elif prop_type_var == "Total Bases":
                                df['Median'] = df['Total Bases']
                            elif prop_type_var == "Hits + Runs + RBIs":
                                df['Median'] = df['Hits + Runs + RBIs']
                            elif prop_type_var == "Steals":
                                df['Median'] = df['Steals']
                            elif prop_type_var == "Hits":
                                df['Median'] = df['Hits']
                            elif prop_type_var == "Singles":
                                df['Median'] = df['Singles']
                            elif prop_type_var == "Doubles":
                                df['Median'] = df['Doubles']
                            elif prop_type_var == "Homeruns":
                                df['Median'] = df['HRs']
                            elif prop_type_var == "RBIs":
                                df['Median'] = df['RBIs']
                            elif prop_type_var == "Runs":
                                df['Median'] = df['Runs']
                            elif prop_type_var == "Fantasy":
                                df['Median'] = df['Fantasy']
                            elif prop_type_var == "FD_Fantasy":
                                df['Median'] = df['FD_Fantasy']
                            elif prop_type_var == "PrizePicks":
                                df['Median'] = df['PrizePicks']

                        flex_file = df
                        if prop_group_var == 'Pitchers':
                            flex_file['Floor'] = flex_file['Median'] * .20
                            flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
                            flex_file['STD'] = flex_file['Median'] / 4
                            flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]

                        elif prop_group_var == 'Hitters':
                            flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
                            flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] + (flex_file['Median'] * .80), flex_file['Median'] * 4)
                            flex_file['STD'] = flex_file['Median'] / 1.5
                            flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]

                        hold_file = flex_file
                        overall_file = flex_file
                        salary_file = flex_file

                        overall_players = overall_file[['Player']]

                        for x in range(0,total_sims):
                            overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])

                        overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                        overall_file.astype('int').dtypes

                        players_only = hold_file[['Player']]

                        player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)

                        players_only['Mean_Outcome'] = overall_file.mean(axis=1)
                        players_only['10%'] = overall_file.quantile(0.1, axis=1)
                        players_only['90%'] = overall_file.quantile(0.9, axis=1)
                        if ou_var == 'Over':
                            players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
                        elif ou_var == 'Under':
                            players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))

                        players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))

                        players_only['Player'] = hold_file[['Player']]

                        final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
                        final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
                        final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
                        player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
                        player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
                        player_outcomes = player_outcomes.reset_index()
                        player_outcomes.columns = ['Instance', 'Outcome']

                        x1 = player_outcomes.Outcome.to_numpy()

                        print(x1)

                        hist_data = [x1]

                        group_labels = ['player outcomes']

                        fig = ff.create_distplot(
                                hist_data, group_labels, bin_size=[.05])
                        fig.add_vline(x=prop_var, line_dash="dash", line_color="green")

                        with df_hold_container:
                            df_hold_container = st.empty()
                            format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
                            st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)

                        with info_hold_container:
                            st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')

                        with plot_hold_container:
                            st.dataframe(player_outcomes, use_container_width = True)
                            plot_hold_container = st.empty()
                            st.plotly_chart(fig, use_container_width=True)

with tab5:
    st.info(t_stamp)
    st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
    if st.button("Reset Data/Load Data", key='reset5'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
              pitcher_stats, hitter_stats, team_frame, prop_frame, pick_frame, t_stamp = init_baselines()
    col1, col2 = st.columns([1, 5])
    
    with col2:
        df_hold_container = st.empty()
        info_hold_container = st.empty()
        plot_hold_container = st.empty()
        export_container = st.empty()
    
    with col1:
        game_select_var = st.selectbox('Select prop source', options = ['Draftkings', 'Pick6'])
        if game_select_var == 'Draftkings':
            prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
            working_source = prop_frame.copy
        elif game_select_var == 'Pick6':
            prop_df = pick_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
            working_source = pick_frame.copy()
        st.download_button(
            label="Download Prop Source",
            data=convert_df_to_csv(prop_df),
            file_name='MLB_prop_source.csv',
            mime='text/csv',
            key='prop_source',
        )
        prop_type_var = st.selectbox('Select prop category', options = ['Strikeouts (Pitchers)', 'Total Outs (Pitchers)', 'Earned Runs (Pitchers)', 'Hits Against (Pitchers)',
                                                                        'Walks Allowed (Pitchers)', 'Total Bases (Hitters)', 'Stolen Bases (Hitters)'])

        if st.button('Simulate Prop Category'):
            with col2:
                   
                    with df_hold_container.container():

                        if prop_type_var == "Strikeouts (Pitchers)":
                            player_df = pitcher_stats
                            prop_df = prop_frame[prop_frame['prop_type'] == 'pitcher_strikeouts']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "Total Outs (Pitchers)":
                            player_df = pitcher_stats
                            prop_df = prop_frame[prop_frame['prop_type'] == 'pitcher_outs']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)   
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "Earned Runs (Pitchers)":
                            player_df = pitcher_stats
                            prop_df = prop_frame[prop_frame['prop_type'] == 'pitcher_earned_runs']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)   
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "Hits Against (Pitchers)":
                            player_df = pitcher_stats
                            prop_df = prop_frame[prop_frame['prop_type'] == 'pitcher_hits_allowed']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)   
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "Walks Allowed (Pitchers)":
                            player_df = pitcher_stats
                            prop_df = prop_frame[prop_frame['prop_type'] == 'pitcher_walks']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)   
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "Total Bases (Hitters)":
                            player_df = hitter_stats
                            prop_df = prop_frame[prop_frame['prop_type'] == 'batter_total_bases']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "Stolen Bases (Hitters)":
                            player_df = hitter_stats
                            prop_df = prop_frame[prop_frame['prop_type'] == 'batter_stolen_bases']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        elif prop_type_var == "Hits (Hitters)":
                            player_df = hitter_stats
                            prop_df = prop_frame[prop_frame['prop_type'] == 'batter_hits']
                            prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
                            prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                            prop_df = prop_df.loc[prop_df['Prop'] != 0]
                            prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
                            prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
                            df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
                        
                        prop_dict = dict(zip(df.Player, df.Prop))
                        over_dict = dict(zip(df.Player, df.Over))
                        under_dict = dict(zip(df.Player, df.Under))
                        
                        total_sims = 1000

                        df.replace("", 0, inplace=True)

                        if prop_type_var == "Strikeouts (Pitchers)":
                            df['Median'] = df['Ks']
                        elif prop_type_var == "Earned Runs (Pitchers)":
                            df['Median'] = df['ERs']
                        elif prop_type_var == "Total Outs (Pitchers)":
                            df['Median'] = df['Outs']
                        elif prop_type_var == "Hits Against (Pitchers)":
                            df['Median'] = df['Hits']
                        elif prop_type_var == "Walks Allowed (Pitchers)":
                            df['Median'] = df['BB']
                        elif prop_type_var == "Total Bases (Hitters)":
                            df['Median'] = df['Total Bases']
                        elif prop_type_var == "Stolen Bases (Hitters)":
                            df['Median'] = df['Stolen Bases (Hitters)']

                        flex_file = df
                        if prop_type_var == 'Strikeouts (Pitchers)':
                            flex_file['Floor'] = flex_file['Median'] * .20
                            flex_file['Ceiling'] = flex_file['Median'] * 1.8
                            flex_file['STD'] = flex_file['Median'] / 4
                            flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                            flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]

                        elif prop_type_var == 'Total Outs (Pitchers)':
                            flex_file['Floor'] = flex_file['Median'] * .20
                            flex_file['Ceiling'] = flex_file['Median'] * 1.8
                            flex_file['STD'] = flex_file['Median'] / 4
                            flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                            flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
                        
                        elif prop_type_var == 'Earned Runs (Pitchers)':
                            flex_file['Floor'] = flex_file['Median'] * .20
                            flex_file['Ceiling'] = flex_file['Median'] * 1.8
                            flex_file['STD'] = flex_file['Median'] / 4
                            flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                            flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
                        
                        elif prop_type_var == 'Hits Against (Pitchers)':
                            flex_file['Floor'] = flex_file['Median'] * .20
                            flex_file['Ceiling'] = flex_file['Median'] * 1.8
                            flex_file['STD'] = flex_file['Median'] / 4
                            flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                            flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
                        
                        elif prop_type_var == 'Walks Allowed (Pitchers)':
                            flex_file['Floor'] = flex_file['Median'] * .20
                            flex_file['Ceiling'] = flex_file['Median'] * 1.8
                            flex_file['STD'] = flex_file['Median'] / 4
                            flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                            flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]

                        elif prop_type_var == 'Total Bases (Hitters)':
                            flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
                            flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * 1.8, flex_file['Median'] * 4)
                            flex_file['STD'] = flex_file['Median'] / 1.5
                            flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                            flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]

                        elif prop_type_var == 'Stolen Bases (Hitters)':
                            flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
                            flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * 1.8, flex_file['Median'] * 4)
                            flex_file['STD'] = flex_file['Median'] / 1.5
                            flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                            flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]

                        hold_file = flex_file
                        overall_file = flex_file
                        prop_file = flex_file
                              
                        overall_players = overall_file[['Player']]

                        for x in range(0,total_sims):    
                            prop_file[x] = prop_file['Prop']

                        prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

                        for x in range(0,total_sims):
                            overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])

                        overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

                        players_only = hold_file[['Player']]

                        player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)

                        prop_check = (overall_file - prop_file)

                        players_only['Mean_Outcome'] = overall_file.mean(axis=1)
                        players_only['10%'] = overall_file.quantile(0.1, axis=1)
                        players_only['90%'] = overall_file.quantile(0.9, axis=1)
                        players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
                        players_only['Imp Over'] = players_only['Player'].map(over_dict)
                        players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
                        players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
                        players_only['Imp Under'] = players_only['Player'].map(under_dict)
                        players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
                        players_only['Prop'] = players_only['Player'].map(prop_dict)
                        players_only['Prop_avg'] = players_only['Prop'].mean() / 100
                        players_only['prop_threshold'] = .10
                        players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
                        players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
                        players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
                        players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
                        players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
                        players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
                        players_only['Edge'] = players_only['Bet_check']

                        players_only['Player'] = hold_file[['Player']]

                        final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
                        
                        final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
                    
                        final_outcomes = final_outcomes.set_index('Player')

                        with df_hold_container:
                            df_hold_container = st.empty()
                            st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
                        with export_container:
                            export_container = st.empty()
                            st.download_button(
                                label="Export Projections",
                                data=convert_df_to_csv(final_outcomes),
                                file_name='MLB_DFS_prop_proj.csv',
                                mime='text/csv',
                                key='prop_proj',
                            )

with tab6:
    col1, col2, col3 = st.columns([2, 2, 2])
    st.info(t_stamp)
    st.info('This sheet is more or less a static represenation of the Stat Specific Simulations. ROR is rate of return based on hit rate and payout. Use the over and under EDGEs to place bets. 20%+ should be considered a 1 unit bet, 15-20% is .75 units, 10-15% is .50 units, 5-10% is .25 units, and 0-5% is .1 units.')
    if st.button("Reset Data", key='reset6'):
            st.cache_data.clear()
            pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame, t_stamp = init_baselines()
    with col1:
        split_var6 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var6')
        if split_var6 == 'Specific Teams':
            team_var6 = st.multiselect('Which teams would you like to include in the tables?', options = betsheet_frame['Team'].unique(), key='team_var6')
        elif split_var6 == 'All':
            team_var6 = betsheet_frame.Team.values.tolist()
    with col2:
        prop_choice_var6 = st.radio("Would you like to view all prop types or specific ones?", ('All', 'Specific Props'), key='prop_choice_var6')
        if prop_choice_var6 == 'Specific Props':
            prop_var6 = st.multiselect('Which props would you like to include in the tables?', options = betsheet_frame['prop_type'].unique(), key='prop_var6')
        elif prop_choice_var6 == 'All':
            prop_var6 = betsheet_frame.prop_type.values.tolist()
    with col3:
        player_choice_var6 = st.radio("Would you like to view all players props or specific ones?", ('All', 'Specific Players'), key='player_choice_var6')
        if player_choice_var6 == 'Specific Players':
            player_var6 = st.multiselect('Which players would you like to include in the tables?', options = betsheet_frame['Player'].unique(), key='player_var6')
        elif player_choice_var6 == 'All':
            player_var6 = betsheet_frame.Player.values.tolist()
    betsheet_disp = betsheet_frame.copy()
    betsheet_disp = betsheet_disp[betsheet_disp['Team'].isin(team_var6)]
    betsheet_disp = betsheet_disp[betsheet_disp['prop_type'].isin(prop_var6)]
    betsheet_disp = betsheet_disp[betsheet_disp['Player'].isin(player_var6)]
    betsheet_disp = betsheet_disp.sort_values(by='over_EDGE', ascending=False)
    st.dataframe(betsheet_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=750, use_container_width = True)
    st.download_button(
        label="Export Betsheet",
        data=convert_df_to_csv(betsheet_disp),
        file_name='MLB_Betsheet_export.csv',
        mime='text/csv',
        key='MLB_Betsheet_export',
    )