Multichem's picture
Create app.py
7ec6c72 verified
raw
history blame
34 kB
import pulp
import numpy as np
import pandas as pd
import random
import sys
import openpyxl
import re
import time
import streamlit as st
import matplotlib
from matplotlib.colors import LinearSegmentedColormap
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
import json
import requests
import gspread
import plotly.figure_factory as ff
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
st.set_page_config(layout="wide")
game_format = {'Win Percentage': '{:.2%}','Cover Spread Percentage': '{:.2%}', 'First Inning Lead Percentage': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}'}
american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}
master_hold = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'
@st.cache_data
def load_pitcher_props():
sh = gc.open_by_url(master_hold)
worksheet = sh.worksheet('Pitcher_Stats')
props_frame_hold = pd.DataFrame(worksheet.get_all_records())
props_frame_hold.rename(columns={"Names": "Player"}, inplace = True)
props_frame_hold = props_frame_hold[['Player', 'Team', 'BB', 'Hits', 'HRs', 'ERs', 'Ks', 'Outs', 'Fantasy', 'FD_Fantasy', 'PrizePicks']]
props_frame_hold = props_frame_hold.drop_duplicates(subset='Player')
return props_frame_hold
@st.cache_data
def load_time():
sh = gc.open_by_url(master_hold)
worksheet = sh.worksheet('Timestamp')
raw_stamp = worksheet.acell('a1').value
t_stamp = f"Last update was at {raw_stamp}"
return t_stamp
@st.cache_data
def load_hitter_props():
sh = gc.open_by_url(master_hold)
worksheet = sh.worksheet('Hitter_Stats')
props_frame_hold = pd.DataFrame(worksheet.get_all_records())
props_frame_hold.rename(columns={"Names": "Player"}, inplace = True)
props_frame_hold = props_frame_hold[['Player', 'Team', 'Walks', 'Steals', 'Hits', 'Singles', 'Doubles', 'HRs', 'RBIs', 'Runs', 'Fantasy', 'FD_Fantasy', 'PrizePicks']]
props_frame_hold['Total Bases'] = props_frame_hold['Singles'] + (props_frame_hold['Doubles'] * 2) + (props_frame_hold['HRs'] * 4)
props_frame_hold['Hits + Runs + RBIs'] = props_frame_hold['Hits'] + props_frame_hold['Runs'] + props_frame_hold['RBIs']
props_frame_hold = props_frame_hold.drop_duplicates(subset='Player')
return props_frame_hold
@st.cache_data
def load_team_table():
sh = gc.open_by_url(master_hold)
worksheet = sh.worksheet('Game_Betting_Model')
team_frame = pd.DataFrame(worksheet.get_all_records())
team_frame = team_frame.drop_duplicates(subset='Names')
team_frame['Win Percentage'] = team_frame['Win Percentage'].str.replace('%', '').astype('float')/100
team_frame['Cover Spread Percentage'] = team_frame['Cover Spread Percentage'].str.replace('%', '').astype('float')/100
return team_frame
@st.cache_data
def load_strikeout_props():
sh = gc.open_by_url(master_hold)
worksheet = sh.worksheet('Strikeout_Props')
prop_type_frame = pd.DataFrame(worksheet.get_all_records())
prop_type_frame = prop_type_frame.drop_duplicates(subset='Player')
return prop_type_frame
@st.cache_data
def load_total_outs_props():
sh = gc.open_by_url(master_hold)
worksheet = sh.worksheet('Total_Outs_Props')
prop_type_frame = pd.DataFrame(worksheet.get_all_records())
prop_type_frame = prop_type_frame.drop_duplicates(subset='Player')
return prop_type_frame
@st.cache_data
def load_total_bases_props():
sh = gc.open_by_url(master_hold)
worksheet = sh.worksheet('Total_Base_Props')
prop_type_frame = pd.DataFrame(worksheet.get_all_records())
prop_type_frame = prop_type_frame.drop_duplicates(subset='Player')
return prop_type_frame
@st.cache_data
def load_stolen_bases_props():
sh = gc.open_by_url(master_hold)
worksheet = sh.worksheet('SB_Props')
prop_type_frame = pd.DataFrame(worksheet.get_all_records())
prop_type_frame = prop_type_frame.drop_duplicates(subset='Player')
return prop_type_frame
pitcher_frame_hold = load_pitcher_props()
hitter_frame_hold = load_hitter_props()
team_frame_hold = load_team_table()
t_stamp = load_time()
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "Pitcher Prop Projections", "Hitter Prop Projections", "Player Prop Simulations", "Stat Specific Simulations"])
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
with tab1:
st.info(t_stamp)
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
pitcher_frame_hold = load_pitcher_props()
hitter_frame_hold = load_hitter_props()
team_frame_hold = load_team_table()
t_stamp = load_time()
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
team_frame = team_frame_hold
if line_var1 == 'Percentage':
team_frame = team_frame[['Names', 'Game', 'Win Percentage', 'Spread', 'Cover Spread Percentage', 'Avg Score', 'Game Total', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage']]
team_frame = team_frame.set_index('Names')
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
if line_var1 == 'American':
team_frame = team_frame[['Names', 'Game', 'American ML', 'Spread', 'American Cover', 'Avg Score', 'Game Total', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage']]
team_frame.rename(columns={"American ML": "Win Percentage", "American Cover": "Cover Spread Percentage"}, inplace = True)
team_frame = team_frame.set_index('Names')
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(american_format, precision=2), use_container_width = True)
st.download_button(
label="Export Team Model",
data=convert_df_to_csv(team_frame),
file_name='MLB_team_betting_export.csv',
mime='text/csv',
key='team_export',
)
with tab2:
st.info(t_stamp)
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
pitcher_frame_hold = load_pitcher_props()
hitter_frame_hold = load_hitter_props()
team_frame_hold = load_team_table()
t_stamp = load_time()
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
if split_var1 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = pitcher_frame_hold['Team'].unique(), key='team_var1')
elif split_var1 == 'All':
team_var1 = pitcher_frame_hold.Team.values.tolist()
pitcher_frame_hold = pitcher_frame_hold[pitcher_frame_hold['Team'].isin(team_var1)]
pitcher_frame = pitcher_frame_hold.set_index('Player')
pitcher_frame = pitcher_frame.sort_values(by='Ks', ascending=False)
st.dataframe(pitcher_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Prop Model",
data=convert_df_to_csv(pitcher_frame),
file_name='MLB_pitcher_prop_export.csv',
mime='text/csv',
key='pitcher_prop_export',
)
with tab3:
st.info(t_stamp)
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
pitcher_frame_hold = load_pitcher_props()
hitter_frame_hold = load_hitter_props()
team_frame_hold = load_team_table()
t_stamp = load_time()
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = hitter_frame_hold['Team'].unique(), key='team_var2')
elif split_var2 == 'All':
team_var2 = hitter_frame_hold.Team.values.tolist()
hitter_frame_hold = hitter_frame_hold[hitter_frame_hold['Team'].isin(team_var2)]
hitter_frame = hitter_frame_hold.set_index('Player')
hitter_frame = hitter_frame.sort_values(by='Hits + Runs + RBIs', ascending=False)
st.dataframe(hitter_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Prop Model",
data=convert_df_to_csv(hitter_frame),
file_name='MLB_hitter_prop_export.csv',
mime='text/csv',
key='hitter_prop_export',
)
with tab4:
st.info(t_stamp)
if st.button("Reset Data", key='reset4'):
st.cache_data.clear()
pitcher_frame_hold = load_pitcher_props()
hitter_frame_hold = load_hitter_props()
team_frame_hold = load_team_table()
t_stamp = load_time()
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
with col1:
prop_group_var = st.selectbox('What kind of props are you simulating?', options = ['Pitchers', 'Hitters'])
if prop_group_var == 'Pitchers':
player_check = st.selectbox('Select player to simulate props', options = pitcher_frame_hold['Player'].unique())
prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Strikeouts', 'Walks', 'Hits', 'Homeruns', 'Earned Runs', 'Outs', 'Fantasy', 'FD_Fantasy', 'PrizePicks'])
elif prop_group_var == 'Hitters':
player_check = st.selectbox('Select player to simulate props', options = hitter_frame_hold['Player'].unique())
prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Total Bases', 'Walks', 'Steals', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'RBIs', 'Runs', 'Hits + Runs + RBIs', 'Fantasy', 'FD_Fantasy', 'PrizePicks'])
ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 5.5, step = .5)
line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1000, max_value = 1000, value = -150, step = 1)
line_var = line_var + 1
if st.button('Simulate Prop'):
with col2:
with df_hold_container.container():
if prop_group_var == 'Pitchers':
df = pitcher_frame_hold
elif prop_group_var == 'Hitters':
df = hitter_frame_hold
total_sims = 1000
df.replace("", 0, inplace=True)
player_var = df.loc[df['Player'] == player_check]
player_var = player_var.reset_index()
if prop_group_var == 'Pitchers':
if prop_type_var == "Walks":
df['Median'] = df['BB']
elif prop_type_var == "Hits":
df['Median'] = df['Hits']
elif prop_type_var == "Homeruns":
df['Median'] = df['HRs']
elif prop_type_var == "Earned Runs":
df['Median'] = df['ERs']
elif prop_type_var == "Strikeouts":
df['Median'] = df['Ks']
elif prop_type_var == "Outs":
df['Median'] = df['Outs']
elif prop_type_var == "Fantasy":
df['Median'] = df['Fantasy']
elif prop_type_var == "FD_Fantasy":
df['Median'] = df['FD_Fantasy']
elif prop_type_var == "PrizePicks":
df['Median'] = df['PrizePicks']
elif prop_group_var == 'Hitters':
if prop_type_var == "Walks":
df['Median'] = df['Walks']
elif prop_type_var == "Total Bases":
df['Median'] = df['Total Bases']
elif prop_type_var == "Hits + Runs + RBIs":
df['Median'] = df['Hits + Runs + RBIs']
elif prop_type_var == "Steals":
df['Median'] = df['Steals']
elif prop_type_var == "Hits":
df['Median'] = df['Hits']
elif prop_type_var == "Singles":
df['Median'] = df['Singles']
elif prop_type_var == "Doubles":
df['Median'] = df['Doubles']
elif prop_type_var == "Homeruns":
df['Median'] = df['HRs']
elif prop_type_var == "RBIs":
df['Median'] = df['RBIs']
elif prop_type_var == "Runs":
df['Median'] = df['Runs']
elif prop_type_var == "Fantasy":
df['Median'] = df['Fantasy']
elif prop_type_var == "FD_Fantasy":
df['Median'] = df['FD_Fantasy']
elif prop_type_var == "PrizePicks":
df['Median'] = df['PrizePicks']
flex_file = df
if prop_group_var == 'Pitchers':
flex_file['Floor'] = flex_file['Median'] * .20
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
flex_file['STD'] = flex_file['Median'] / 4
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
elif prop_group_var == 'Hitters':
flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] + (flex_file['Median'] * .80), flex_file['Median'] * 4)
flex_file['STD'] = flex_file['Median'] / 1.5
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
if ou_var == 'Over':
players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
elif ou_var == 'Under':
players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))
players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
player_outcomes = player_outcomes.reset_index()
player_outcomes.columns = ['Instance', 'Outcome']
x1 = player_outcomes.Outcome.to_numpy()
print(x1)
hist_data = [x1]
group_labels = ['player outcomes']
fig = ff.create_distplot(
hist_data, group_labels, bin_size=[.05])
fig.add_vline(x=prop_var, line_dash="dash", line_color="green")
with df_hold_container:
df_hold_container = st.empty()
format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)
with info_hold_container:
st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')
with plot_hold_container:
st.dataframe(player_outcomes, use_container_width = True)
plot_hold_container = st.empty()
st.plotly_chart(fig, use_container_width=True)
with tab5:
st.info(t_stamp)
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
if st.button("Reset Data/Load Data", key='reset5'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
t_stamp = load_time()
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
export_container = st.empty()
with col1:
prop_type_var = st.selectbox('Select prop category', options = ['Strikeouts (Pitchers)', 'Total Outs (Pitchers)'])
if st.button('Simulate Prop Category'):
with col2:
with df_hold_container.container():
if prop_type_var == "Strikeouts (Pitchers)":
player_df = pitcher_frame_hold
prop_df = load_strikeout_props()
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "Total Outs (Pitchers)":
player_df = pitcher_frame_hold
prop_df = load_total_outs_props()
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "Total Bases (Hitters)":
player_df = hitter_frame_hold
prop_df = load_total_bases_props()
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "Stolen Bases (Hitters)":
player_df = hitter_frame_hold
prop_df = load_stolen_base_props()
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
prop_dict = dict(zip(df.Player, df.Prop))
over_dict = dict(zip(df.Player, df.Over))
under_dict = dict(zip(df.Player, df.Under))
total_sims = 1000
df.replace("", 0, inplace=True)
if prop_type_var == "Strikeouts (Pitchers)":
df['Median'] = df['Ks']
elif prop_type_var == "Total Outs (Pitchers)":
df['Median'] = df['Outs']
elif prop_type_var == "Total Bases (Hitters)":
df['Median'] = df['Total Bases']
elif prop_type_var == "Stolen Bases (Hitters)":
df['Median'] = df['Stolen Bases (Hitters)']
flex_file = df
if prop_type_var == 'Strikeouts (Pitchers)':
flex_file['Floor'] = flex_file['Median'] * .20
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
flex_file['STD'] = flex_file['Median'] / 4
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
elif prop_type_var == 'Total Outs (Pitchers)':
flex_file['Floor'] = flex_file['Median'] * .20
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
flex_file['STD'] = flex_file['Median'] / 4
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
elif prop_type_var == 'Total Bases (Hitters)':
flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] + (flex_file['Median'] * .80), flex_file['Median'] * 4)
flex_file['STD'] = flex_file['Median'] / 1.5
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
elif prop_type_var == 'Stolen Bases (Hitters)':
flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] + (flex_file['Median'] * .80), flex_file['Median'] * 4)
flex_file['STD'] = flex_file['Median'] / 1.5
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
prop_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
final_outcomes = final_outcomes.set_index('Player')
with df_hold_container:
df_hold_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with export_container:
export_container = st.empty()
st.download_button(
label="Export Projections",
data=convert_df_to_csv(final_outcomes),
file_name='MLB_DFS_prop_proj.csv',
mime='text/csv',
key='prop_proj',
)