File size: 30,367 Bytes
fc66a5d
 
 
 
 
 
 
 
 
 
 
 
f09155a
 
 
 
 
fc66a5d
 
 
f09155a
fc66a5d
 
57aa7f7
 
 
 
 
 
 
 
 
 
 
 
 
fc66a5d
57aa7f7
fc66a5d
 
 
 
 
 
 
 
 
e99a117
 
fc66a5d
 
 
 
 
 
 
 
 
 
 
c6eec33
132376e
a2caa25
fc66a5d
 
57aa7f7
 
 
 
 
 
 
 
fc66a5d
 
 
 
 
 
 
57aa7f7
 
 
 
 
 
 
 
fc66a5d
6ec8977
 
 
 
 
 
 
 
 
fc66a5d
 
 
 
 
 
 
 
 
 
 
 
 
57aa7f7
 
 
 
 
 
fc66a5d
 
 
 
 
e8e625f
 
 
fc66a5d
 
 
 
57aa7f7
 
 
 
 
 
fc66a5d
 
 
 
 
e8e625f
 
 
fc66a5d
 
 
dc1bf8e
57aa7f7
dc1bf8e
 
57aa7f7
dc1bf8e
 
fc66a5d
381bd72
 
 
a2caa25
93c9d72
fc66a5d
e8e625f
 
 
fc66a5d
 
 
dc1bf8e
57aa7f7
dc1bf8e
 
57aa7f7
dc1bf8e
 
fc66a5d
381bd72
 
 
a2caa25
93c9d72
fc66a5d
e8e625f
 
 
fc66a5d
 
 
 
 
 
 
 
3fffb63
fc66a5d
3fffb63
272a56a
3fffb63
 
fc66a5d
 
3fffb63
fc66a5d
3fffb63
fc66a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fffb63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1bf8e
3fffb63
dc1bf8e
3fffb63
 
dc1bf8e
3fffb63
dc1bf8e
3fffb63
 
dc1bf8e
31b7161
3fffb63
dc1bf8e
31b7161
3fffb63
 
 
e66b5a6
3fffb63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b31ca72
3fffb63
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
from itertools import combinations

scope = ['https://www.googleapis.com/auth/spreadsheets',
          "https://www.googleapis.com/auth/drive"]

credentials = {
  "type": "service_account",
  "project_id": "model-sheets-connect",
  "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
  "client_email": "[email protected]",
  "client_id": "100369174533302798535",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}

credentials2 = {
  "type": "service_account",
  "project_id": "sheets-api-connect-378620",
  "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
  "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
  "client_id": "106625872877651920064",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}

gc = gspread.service_account_from_dict(credentials)
gc2 = gspread.service_account_from_dict(credentials2)

st.set_page_config(layout="wide")

game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
              'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}

player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
                   '4x%': '{:.2%}','GPP%': '{:.2%}'}

wrong_acro = ['AZ', 'CHW']
right_acro = ['ARI', 'CWS']

dk_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
fd_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'

secondary_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
secondary_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'

all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
all_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
final_Proj = 0

expected_lineup = "❓"
confirmed_lineup = "✅"

@st.cache_data
def load_time():
    try:
        sh = gc.open_by_url(dk_player_projections)
        worksheet = sh.worksheet('Timestamp')
        raw_stamp = worksheet.acell('a1').value
    except:
        sh = gc2.open_by_url(dk_player_projections)
        worksheet = sh.worksheet('Timestamp')
        raw_stamp = worksheet.acell('a1').value
          
    t_stamp = f"Last update was at {raw_stamp}"
          
    return t_stamp

@st.cache_data
def set_slate_teams():
    try:
        sh = gc.open_by_url(all_dk_player_projections)
        worksheet = sh.worksheet('Site_Info')
        raw_display = pd.DataFrame(worksheet.get_all_records())
    except:
        sh = gc2.open_by_url(all_dk_player_projections)
        worksheet = sh.worksheet('Site_Info')
        raw_display = pd.DataFrame(worksheet.get_all_records())

    for checkVar in range(len(wrong_acro)):
                    raw_display['DK Main'] = raw_display['DK Main'].replace(wrong_acro, right_acro)
                    
    for checkVar in range(len(wrong_acro)):
                    raw_display['DK Secondary'] = raw_display['DK Secondary'].replace(wrong_acro, right_acro)
                    
    for checkVar in range(len(wrong_acro)):
                    raw_display['DK Overall'] = raw_display['DK Overall'].replace(wrong_acro, right_acro)
        
    for checkVar in range(len(wrong_acro)):
                    raw_display['FD Main'] = raw_display['FD Main'].replace(wrong_acro, right_acro)
                    
    for checkVar in range(len(wrong_acro)):
                    raw_display['FD Secondary'] = raw_display['FD Secondary'].replace(wrong_acro, right_acro)
                    
    for checkVar in range(len(wrong_acro)):
                    raw_display['FD Overall'] = raw_display['FD Overall'].replace(wrong_acro, right_acro)

    return raw_display

@st.cache_data
def load_dk_player_projections(URL):
    try:
        sh = gc.open_by_url(URL)
        worksheet = sh.worksheet('DK_Projections')
    except:
        sh = gc2.open_by_url(URL)
        worksheet = sh.worksheet('DK_Projections')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    load_display = load_display.drop_duplicates(subset='Player')
    raw_display = load_display.dropna(subset=['Median'])

    for checkVar in range(len(wrong_acro)):
                    raw_display['Team'] = raw_display['Team'].replace(wrong_acro, right_acro)

    return raw_display

@st.cache_data
def load_fd_player_projections(URL):
    try:
        sh = gc.open_by_url(URL)
        worksheet = sh.worksheet('FD_Projections')
    except:
        sh = gc2.open_by_url(URL)
        worksheet = sh.worksheet('FD_Projections')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    load_display = load_display.drop_duplicates(subset='Player')
    raw_display = load_display.dropna(subset=['Median'])

    for checkVar in range(len(wrong_acro)):
                    raw_display['Team'] = raw_display['Team'].replace(wrong_acro, right_acro)

    return raw_display

@st.cache_data
def load_dk_player_roo(tab):
    try:
        sh = gc.open_by_url(all_dk_player_projections)
        worksheet = sh.worksheet(tab)
    except:
        sh = gc2.open_by_url(all_dk_player_projections)
        worksheet = sh.worksheet(tab)
    load_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = load_display[['Player', 'Confirmed', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish',
                                'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%', 'Own%', 'Small Field Own%',
                                'Large Field Own%', 'Cash Own%']]
    raw_display = raw_display.replace('Expected Lineup', expected_lineup)
    raw_display = raw_display.replace('Confirmed Lineup', confirmed_lineup)

    for checkVar in range(len(wrong_acro)):
                    raw_display['Team'] = raw_display['Team'].replace(wrong_acro, right_acro)

    return raw_display

@st.cache_data
def load_fd_player_roo(tab):
    try:
        sh = gc.open_by_url(all_dk_player_projections)
        worksheet = sh.worksheet(tab)
    except:
        sh = gc2.open_by_url(all_dk_player_projections)
        worksheet = sh.worksheet(tab)
    load_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = load_display[['Player', 'Confirmed', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish',
                                'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%', 'Own%', 'Small Field Own%',
                                'Large Field Own%', 'Cash Own%']]
    raw_display = raw_display.replace('Expected Lineup', expected_lineup)
    raw_display = raw_display.replace('Confirmed Lineup', confirmed_lineup)

    for checkVar in range(len(wrong_acro)):
                    raw_display['Team'] = raw_display['Team'].replace(wrong_acro, right_acro)

    return raw_display

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

t_stamp = load_time()
site_slates = set_slate_teams()
col1, col2, col3, col4, col5 = st.columns([2, 2, 2, 2, 2])

#st.info(t_stamp)
if st.button("Load/Reset Data", key='reset30'):
      t_stamp = load_time()
      st.cache_data.clear()
with col1:
    slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games'), key='slate_var1')
with col2:
    site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
with col3:
    custom_var1 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var1')
    if custom_var1 == 'No':
              if slate_var1 == 'Main Slate':
                    if site_var1 == 'Draftkings':
                        slate_teams = site_slates['DK Main'].values.tolist()
                        raw_baselines = load_dk_player_projections(all_dk_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
                    elif site_var1 == 'Fanduel':
                        slate_teams = site_slates['FD Main'].values.tolist()
                        raw_baselines = load_fd_player_projections(all_fd_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
              elif slate_var1 == 'Secondary Slate':
                    if site_var1 == 'Draftkings':
                        slate_teams = site_slates['DK Secondary'].values.tolist()
                        raw_baselines = load_dk_player_projections(all_dk_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
                    elif site_var1 == 'Fanduel':
                        slate_teams = site_slates['FD Secondary'].values.tolist()
                        raw_baselines = load_fd_player_projections(all_fd_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
              elif slate_var1 == 'All Games':
                    if site_var1 == 'Draftkings':
                        slate_teams = site_slates['DK Overall'].values.tolist()
                        raw_baselines = load_dk_player_projections(all_dk_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
                    elif site_var1 == 'Fanduel':
                        slate_teams = site_slates['FD Overall'].values.tolist()
                        raw_baselines = load_fd_player_projections(all_fd_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
    if custom_var1 == 'Yes':
              contest_var1 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1')
              if slate_var1 == 'Main Slate':
                    if site_var1 == 'Draftkings':
                        slate_teams = site_slates['DK Main'].values.tolist()
                        raw_baselines = load_dk_player_projections(all_dk_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
                    elif site_var1 == 'Fanduel':
                        slate_teams = site_slates['FD Main'].values.tolist()
                        raw_baselines = load_fd_player_projections(all_fd_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
              elif slate_var1 == 'Secondary Slate':
                    if site_var1 == 'Draftkings':
                        slate_teams = site_slates['DK Secondary'].values.tolist()
                        raw_baselines = load_dk_player_projections(all_dk_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
                    elif site_var1 == 'Fanduel':
                        slate_teams = site_slates['FD Secondary'].values.tolist()
                        raw_baselines = load_fd_player_projections(all_fd_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
              elif slate_var1 == 'All Games':
                    if site_var1 == 'Draftkings':
                        slate_teams = site_slates['DK Overall'].values.tolist()
                        raw_baselines = load_dk_player_projections(all_dk_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
                    elif site_var1 == 'Fanduel':
                        slate_teams = site_slates['FD Overall'].values.tolist()
                        raw_baselines = load_fd_player_projections(all_fd_player_projections)
                        raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
with col4:
    split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
    if split_var1 == 'Specific Games':
        team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
    elif split_var1 == 'Full Slate Run':
        team_var1 = raw_baselines.Team.values.tolist()
with col5:
    pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
    if pos_split1 == 'Specific Positions':
        pos_var1 = st.multiselect('What Positions would you like to view?', options = ['SP', 'P', 'C', '1B', '2B', '3B', 'SS', 'OF'])
    elif pos_split1 == 'All Positions':
        pos_var1 = 'All'



if custom_var1 == 'No':
      if slate_var1 == 'Main Slate':
             if site_var1 == 'Draftkings':
                  final_Proj = load_dk_player_roo('Main_ROO')
             elif site_var1 == 'Fanduel':
                  final_Proj = load_fd_player_roo('Main_FD_ROO')
      elif slate_var1 == 'Secondary Slate':
             if site_var1 == 'Draftkings':
                  final_Proj = load_dk_player_roo('Secondary_ROO')
             elif site_var1 == 'Fanduel':
                  final_Proj = load_fd_player_roo('Secondary_FD_ROO')
      elif slate_var1 == 'All Games':
             if site_var1 == 'Draftkings':
                  final_Proj = load_dk_player_roo('Merged_ROO')
                  final_Proj = final_Proj.drop_duplicates(subset='Player')
             elif site_var1 == 'Fanduel':
                  final_Proj = load_fd_player_roo('Merged_FD_ROO')
                  final_Proj = final_Proj.drop_duplicates(subset='Player')
      final_Proj = final_Proj[final_Proj['Team'].isin(team_var1)]
      if pos_var1 != 'All':
             final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))]
      st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=1000, use_container_width = True)
      st.download_button(
            label="Export Tables",
            data=convert_df_to_csv(final_Proj),
            file_name='Custom_MLB_export.csv',
            mime='text/csv',
      )
elif custom_var1 == 'Yes':
          hold_container = st.empty()
          if st.button('Create Range of Outcomes for Slate'):
              with hold_container:
                  working_roo = raw_baselines
                  working_roo = working_roo[working_roo['Team'].isin(team_var1)]
                  own_dict = dict(zip(working_roo.Player, working_roo.Own))
                  team_dict = dict(zip(working_roo.Player, working_roo.Team))
                  total_sims = 1000

                  flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Ceiling_Var']]
                  flex_file['Floor'] = flex_file['Median']*.25
                  flex_file['Ceiling'] = np.where(flex_file['Position'] == 'SP', (flex_file['Median'] + (flex_file['Floor'])) + ((flex_file['Ceiling_Var'] * 10) * 3), (flex_file['Median'] + (flex_file['Floor'])) + ((flex_file['Ceiling_Var'] * 10)))
                  flex_file['STD'] = (flex_file['Median']/4)
                  flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
                  if pos_split1 == 'All Positions':
                      flex_file = flex_file
                  elif pos_split1 != 'All Positions':
                      if pos_var1 == 'Pitchers':
                          flex_file = flex_file[flex_file['Position'] == 'SP']
                      elif pos_var1 == 'Hitters':
                          flex_file = flex_file[flex_file['Position'] != 'SP']
                      elif pos_var1 not in ['Pitchers', 'Hitters']: 
                          flex_file = flex_file[flex_file['Position'].str.contains('|'.join(pos_var1))]
                  hold_file = flex_file
                  overall_file = flex_file
                  salary_file = flex_file

                  overall_players = overall_file[['Player']]

                  for x in range(0,total_sims):    
                      salary_file[x] = salary_file['Salary']

                  salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                  salary_file.astype('int').dtypes

                  salary_file = salary_file.div(1000)

                  for x in range(0,total_sims):    
                      overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])

                  overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                  overall_file.astype('int').dtypes

                  players_only = hold_file[['Player']]
                  raw_lineups_file = players_only

                  for x in range(0,total_sims):
                      maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
                      raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
                      players_only[x] = raw_lineups_file[x].rank(ascending=False)

                  players_only=players_only.drop(['Player'], axis=1)
                  players_only.astype('int').dtypes

                  salary_2x_check = (overall_file - (salary_file*2))
                  salary_3x_check = (overall_file - (salary_file*3))
                  salary_4x_check = (overall_file - (salary_file*4))
                  gpp_check = (overall_file - ((salary_file*2)+10))

                  players_only['Average_Rank'] = players_only.mean(axis=1)
                  players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
                  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
                  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
                  players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
                  players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
                  players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
                  players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
                  players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)

                  players_only['Player'] = hold_file[['Player']]

                  final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%']]

                  final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
                  final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%']]
                  final_Proj['Own'] = final_Proj['Player'].map(own_dict)
                  final_Proj['Team'] = final_Proj['Player'].map(team_dict)
                  final_Proj['Own'] = final_Proj['Own'].astype('float')
                  if contest_var1 == 'Small Field GPP':
                        if site_var1 == 'Draftkings':
                            final_Proj['Own%'] = np.where((final_Proj['Position'] == 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean(), final_Proj['Own'])
                            final_Proj['Own%'] = np.where((final_Proj['Position'] != 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (10 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean(), final_Proj['Own%'])
                            final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
                        elif site_var1 == 'Fanduel':
                            final_Proj['Own%'] = np.where((final_Proj['Position'] == 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean(), final_Proj['Own'])
                            final_Proj['Own%'] = np.where((final_Proj['Position'] != 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (10 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean())/150) + final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean(), final_Proj['Own%'])
                            final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
                  elif contest_var1 == 'Large Field GPP':
                        if site_var1 == 'Draftkings':
                            final_Proj['Own%'] = np.where((final_Proj['Position'] == 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (2.5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean(), final_Proj['Own'])
                            final_Proj['Own%'] = np.where((final_Proj['Position'] != 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean(), final_Proj['Own%'])
                            final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
                        elif site_var1 == 'Fanduel':
                            final_Proj['Own%'] = np.where((final_Proj['Position'] == 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (2.5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean(), final_Proj['Own'])
                            final_Proj['Own%'] = np.where((final_Proj['Position'] != 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean())/150) + final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean(), final_Proj['Own%'])
                            final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
                  elif contest_var1 == 'Cash':
                        if site_var1 == 'Draftkings':
                            final_Proj['Own%'] = np.where((final_Proj['Position'] == 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (6 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean(), final_Proj['Own'])
                            final_Proj['Own%'] = np.where((final_Proj['Position'] != 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (11 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean(), final_Proj['Own%'])
                            final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])      
                        elif site_var1 == 'Fanduel':
                            final_Proj['Own%'] = np.where((final_Proj['Position'] == 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (6 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean(), final_Proj['Own'])
                            final_Proj['Own%'] = np.where((final_Proj['Position'] != 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (11 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean())/150) + final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean(), final_Proj['Own%'])
                            final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])

                  final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%', 'Own%']]
                  final_Proj = final_Proj.set_index('Player')
                  final_Proj = final_Proj.sort_values(by='Median', ascending=False)

              with hold_container:
                  hold_container = st.empty()
                  final_Proj = final_Proj
                  st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=1000, use_container_width = True)

              st.download_button(
                      label="Export Tables",
                      data=convert_df_to_csv(final_Proj),
                      file_name='Custom_MLB_export.csv',
                      mime='text/csv',
              )