Spaces:
Runtime error
Runtime error
File size: 30,367 Bytes
fc66a5d f09155a fc66a5d f09155a fc66a5d 57aa7f7 fc66a5d 57aa7f7 fc66a5d e99a117 fc66a5d c6eec33 132376e a2caa25 fc66a5d 57aa7f7 fc66a5d 57aa7f7 fc66a5d 6ec8977 fc66a5d 57aa7f7 fc66a5d e8e625f fc66a5d 57aa7f7 fc66a5d e8e625f fc66a5d dc1bf8e 57aa7f7 dc1bf8e 57aa7f7 dc1bf8e fc66a5d 381bd72 a2caa25 93c9d72 fc66a5d e8e625f fc66a5d dc1bf8e 57aa7f7 dc1bf8e 57aa7f7 dc1bf8e fc66a5d 381bd72 a2caa25 93c9d72 fc66a5d e8e625f fc66a5d 3fffb63 fc66a5d 3fffb63 272a56a 3fffb63 fc66a5d 3fffb63 fc66a5d 3fffb63 fc66a5d 3fffb63 dc1bf8e 3fffb63 dc1bf8e 3fffb63 dc1bf8e 3fffb63 dc1bf8e 3fffb63 dc1bf8e 31b7161 3fffb63 dc1bf8e 31b7161 3fffb63 e66b5a6 3fffb63 b31ca72 3fffb63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
from itertools import combinations
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
credentials2 = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
gc2 = gspread.service_account_from_dict(credentials2)
st.set_page_config(layout="wide")
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
'4x%': '{:.2%}','GPP%': '{:.2%}'}
wrong_acro = ['AZ', 'CHW']
right_acro = ['ARI', 'CWS']
dk_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
fd_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
secondary_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
secondary_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
all_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
final_Proj = 0
expected_lineup = "❓"
confirmed_lineup = "✅"
@st.cache_data
def load_time():
try:
sh = gc.open_by_url(dk_player_projections)
worksheet = sh.worksheet('Timestamp')
raw_stamp = worksheet.acell('a1').value
except:
sh = gc2.open_by_url(dk_player_projections)
worksheet = sh.worksheet('Timestamp')
raw_stamp = worksheet.acell('a1').value
t_stamp = f"Last update was at {raw_stamp}"
return t_stamp
@st.cache_data
def set_slate_teams():
try:
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('Site_Info')
raw_display = pd.DataFrame(worksheet.get_all_records())
except:
sh = gc2.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('Site_Info')
raw_display = pd.DataFrame(worksheet.get_all_records())
for checkVar in range(len(wrong_acro)):
raw_display['DK Main'] = raw_display['DK Main'].replace(wrong_acro, right_acro)
for checkVar in range(len(wrong_acro)):
raw_display['DK Secondary'] = raw_display['DK Secondary'].replace(wrong_acro, right_acro)
for checkVar in range(len(wrong_acro)):
raw_display['DK Overall'] = raw_display['DK Overall'].replace(wrong_acro, right_acro)
for checkVar in range(len(wrong_acro)):
raw_display['FD Main'] = raw_display['FD Main'].replace(wrong_acro, right_acro)
for checkVar in range(len(wrong_acro)):
raw_display['FD Secondary'] = raw_display['FD Secondary'].replace(wrong_acro, right_acro)
for checkVar in range(len(wrong_acro)):
raw_display['FD Overall'] = raw_display['FD Overall'].replace(wrong_acro, right_acro)
return raw_display
@st.cache_data
def load_dk_player_projections(URL):
try:
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('DK_Projections')
except:
sh = gc2.open_by_url(URL)
worksheet = sh.worksheet('DK_Projections')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
load_display = load_display.drop_duplicates(subset='Player')
raw_display = load_display.dropna(subset=['Median'])
for checkVar in range(len(wrong_acro)):
raw_display['Team'] = raw_display['Team'].replace(wrong_acro, right_acro)
return raw_display
@st.cache_data
def load_fd_player_projections(URL):
try:
sh = gc.open_by_url(URL)
worksheet = sh.worksheet('FD_Projections')
except:
sh = gc2.open_by_url(URL)
worksheet = sh.worksheet('FD_Projections')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
load_display = load_display.drop_duplicates(subset='Player')
raw_display = load_display.dropna(subset=['Median'])
for checkVar in range(len(wrong_acro)):
raw_display['Team'] = raw_display['Team'].replace(wrong_acro, right_acro)
return raw_display
@st.cache_data
def load_dk_player_roo(tab):
try:
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet(tab)
except:
sh = gc2.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet(tab)
load_display = pd.DataFrame(worksheet.get_all_records())
raw_display = load_display[['Player', 'Confirmed', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish',
'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%', 'Own%', 'Small Field Own%',
'Large Field Own%', 'Cash Own%']]
raw_display = raw_display.replace('Expected Lineup', expected_lineup)
raw_display = raw_display.replace('Confirmed Lineup', confirmed_lineup)
for checkVar in range(len(wrong_acro)):
raw_display['Team'] = raw_display['Team'].replace(wrong_acro, right_acro)
return raw_display
@st.cache_data
def load_fd_player_roo(tab):
try:
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet(tab)
except:
sh = gc2.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet(tab)
load_display = pd.DataFrame(worksheet.get_all_records())
raw_display = load_display[['Player', 'Confirmed', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish',
'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%', 'Own%', 'Small Field Own%',
'Large Field Own%', 'Cash Own%']]
raw_display = raw_display.replace('Expected Lineup', expected_lineup)
raw_display = raw_display.replace('Confirmed Lineup', confirmed_lineup)
for checkVar in range(len(wrong_acro)):
raw_display['Team'] = raw_display['Team'].replace(wrong_acro, right_acro)
return raw_display
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
t_stamp = load_time()
site_slates = set_slate_teams()
col1, col2, col3, col4, col5 = st.columns([2, 2, 2, 2, 2])
#st.info(t_stamp)
if st.button("Load/Reset Data", key='reset30'):
t_stamp = load_time()
st.cache_data.clear()
with col1:
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games'), key='slate_var1')
with col2:
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
with col3:
custom_var1 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var1')
if custom_var1 == 'No':
if slate_var1 == 'Main Slate':
if site_var1 == 'Draftkings':
slate_teams = site_slates['DK Main'].values.tolist()
raw_baselines = load_dk_player_projections(all_dk_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
elif site_var1 == 'Fanduel':
slate_teams = site_slates['FD Main'].values.tolist()
raw_baselines = load_fd_player_projections(all_fd_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
elif slate_var1 == 'Secondary Slate':
if site_var1 == 'Draftkings':
slate_teams = site_slates['DK Secondary'].values.tolist()
raw_baselines = load_dk_player_projections(all_dk_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
elif site_var1 == 'Fanduel':
slate_teams = site_slates['FD Secondary'].values.tolist()
raw_baselines = load_fd_player_projections(all_fd_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
elif slate_var1 == 'All Games':
if site_var1 == 'Draftkings':
slate_teams = site_slates['DK Overall'].values.tolist()
raw_baselines = load_dk_player_projections(all_dk_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
elif site_var1 == 'Fanduel':
slate_teams = site_slates['FD Overall'].values.tolist()
raw_baselines = load_fd_player_projections(all_fd_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
if custom_var1 == 'Yes':
contest_var1 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1')
if slate_var1 == 'Main Slate':
if site_var1 == 'Draftkings':
slate_teams = site_slates['DK Main'].values.tolist()
raw_baselines = load_dk_player_projections(all_dk_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
elif site_var1 == 'Fanduel':
slate_teams = site_slates['FD Main'].values.tolist()
raw_baselines = load_fd_player_projections(all_fd_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
elif slate_var1 == 'Secondary Slate':
if site_var1 == 'Draftkings':
slate_teams = site_slates['DK Secondary'].values.tolist()
raw_baselines = load_dk_player_projections(all_dk_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
elif site_var1 == 'Fanduel':
slate_teams = site_slates['FD Secondary'].values.tolist()
raw_baselines = load_fd_player_projections(all_fd_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
elif slate_var1 == 'All Games':
if site_var1 == 'Draftkings':
slate_teams = site_slates['DK Overall'].values.tolist()
raw_baselines = load_dk_player_projections(all_dk_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
elif site_var1 == 'Fanduel':
slate_teams = site_slates['FD Overall'].values.tolist()
raw_baselines = load_fd_player_projections(all_fd_player_projections)
raw_baselines = raw_baselines[raw_baselines['Team'].isin(slate_teams)]
with col4:
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
if split_var1 == 'Specific Games':
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
elif split_var1 == 'Full Slate Run':
team_var1 = raw_baselines.Team.values.tolist()
with col5:
pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
if pos_split1 == 'Specific Positions':
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['SP', 'P', 'C', '1B', '2B', '3B', 'SS', 'OF'])
elif pos_split1 == 'All Positions':
pos_var1 = 'All'
if custom_var1 == 'No':
if slate_var1 == 'Main Slate':
if site_var1 == 'Draftkings':
final_Proj = load_dk_player_roo('Main_ROO')
elif site_var1 == 'Fanduel':
final_Proj = load_fd_player_roo('Main_FD_ROO')
elif slate_var1 == 'Secondary Slate':
if site_var1 == 'Draftkings':
final_Proj = load_dk_player_roo('Secondary_ROO')
elif site_var1 == 'Fanduel':
final_Proj = load_fd_player_roo('Secondary_FD_ROO')
elif slate_var1 == 'All Games':
if site_var1 == 'Draftkings':
final_Proj = load_dk_player_roo('Merged_ROO')
final_Proj = final_Proj.drop_duplicates(subset='Player')
elif site_var1 == 'Fanduel':
final_Proj = load_fd_player_roo('Merged_FD_ROO')
final_Proj = final_Proj.drop_duplicates(subset='Player')
final_Proj = final_Proj[final_Proj['Team'].isin(team_var1)]
if pos_var1 != 'All':
final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))]
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=1000, use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='Custom_MLB_export.csv',
mime='text/csv',
)
elif custom_var1 == 'Yes':
hold_container = st.empty()
if st.button('Create Range of Outcomes for Slate'):
with hold_container:
working_roo = raw_baselines
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
own_dict = dict(zip(working_roo.Player, working_roo.Own))
team_dict = dict(zip(working_roo.Player, working_roo.Team))
total_sims = 1000
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Ceiling_Var']]
flex_file['Floor'] = flex_file['Median']*.25
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'SP', (flex_file['Median'] + (flex_file['Floor'])) + ((flex_file['Ceiling_Var'] * 10) * 3), (flex_file['Median'] + (flex_file['Floor'])) + ((flex_file['Ceiling_Var'] * 10)))
flex_file['STD'] = (flex_file['Median']/4)
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
if pos_split1 == 'All Positions':
flex_file = flex_file
elif pos_split1 != 'All Positions':
if pos_var1 == 'Pitchers':
flex_file = flex_file[flex_file['Position'] == 'SP']
elif pos_var1 == 'Hitters':
flex_file = flex_file[flex_file['Position'] != 'SP']
elif pos_var1 not in ['Pitchers', 'Hitters']:
flex_file = flex_file[flex_file['Position'].str.contains('|'.join(pos_var1))]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file.astype('int').dtypes
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
players_only.astype('int').dtypes
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
gpp_check = (overall_file - ((salary_file*2)+10))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Own'] = final_Proj['Own'].astype('float')
if contest_var1 == 'Small Field GPP':
if site_var1 == 'Draftkings':
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean(), final_Proj['Own'])
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (10 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean(), final_Proj['Own%'])
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
elif site_var1 == 'Fanduel':
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean(), final_Proj['Own'])
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (10 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean())/150) + final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean(), final_Proj['Own%'])
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
elif contest_var1 == 'Large Field GPP':
if site_var1 == 'Draftkings':
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (2.5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean(), final_Proj['Own'])
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean(), final_Proj['Own%'])
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
elif site_var1 == 'Fanduel':
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (2.5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean(), final_Proj['Own'])
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (5 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean())/150) + final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean(), final_Proj['Own%'])
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
elif contest_var1 == 'Cash':
if site_var1 == 'Draftkings':
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (6 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'SP', 'Own'].mean(), final_Proj['Own'])
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'SP') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean() >= 0), final_Proj['Own'] * (11 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] != 'SP', 'Own'].mean(), final_Proj['Own%'])
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
elif site_var1 == 'Fanduel':
final_Proj['Own%'] = np.where((final_Proj['Position'] == 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (6 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean())/100) + final_Proj.loc[final_Proj['Position'] == 'P', 'Own'].mean(), final_Proj['Own'])
final_Proj['Own%'] = np.where((final_Proj['Position'] != 'P') & (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean() >= 0), final_Proj['Own'] * (11 * (final_Proj['Own'] - final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean())/150) + final_Proj.loc[final_Proj['Position'] != 'P', 'Own'].mean(), final_Proj['Own%'])
final_Proj['Own%'] = np.where(final_Proj['Own%'] > 75, 75, final_Proj['Own%'])
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'GPP%', 'Own%']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
with hold_container:
hold_container = st.empty()
final_Proj = final_Proj
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=1000, use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='Custom_MLB_export.csv',
mime='text/csv',
) |