File size: 36,123 Bytes
3293039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c0919a
3293039
322b4b6
3293039
 
 
322b4b6
 
 
3293039
322b4b6
 
3293039
322b4b6
 
3293039
 
 
 
 
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
3293039
322b4b6
3293039
 
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
 
322b4b6
3293039
322b4b6
 
3293039
 
 
 
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
3293039
322b4b6
 
 
 
 
 
3293039
 
 
 
 
 
 
 
 
322b4b6
3293039
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
 
 
 
 
3293039
322b4b6
3293039
 
 
 
 
 
 
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
 
 
 
 
3293039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322b4b6
 
3293039
 
 
 
322b4b6
3293039
322b4b6
3293039
 
322b4b6
3293039
 
 
322b4b6
3293039
 
 
 
 
 
322b4b6
3293039
 
 
 
322b4b6
3293039
322b4b6
3293039
 
 
 
 
 
322b4b6
3293039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322b4b6
3293039
322b4b6
3293039
 
322b4b6
3293039
 
 
 
 
 
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
 
 
 
 
3293039
322b4b6
 
3293039
322b4b6
 
 
 
3293039
322b4b6
3293039
322b4b6
 
 
 
 
 
 
 
 
 
3293039
322b4b6
3293039
322b4b6
 
 
 
3293039
 
322b4b6
 
3293039
 
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
 
 
 
 
 
 
 
 
 
 
 
3293039
 
322b4b6
3293039
322b4b6
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]
        
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import gc
import plotly.express as px
import plotly.io as pio
import pymongo
import certifi
ca = certifi.where()

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }

        client = pymongo.MongoClient("mongodb+srv://multichem:[email protected]/testing_db")
        db = client["testing_db"]

        gc_con = gspread.service_account_from_dict(credentials, scope)
      
        return gc_con, client, db

gcservice_account, client, db = init_conn()

percentages_format = {'PG': '{:.2%}', 'SG': '{:.2%}', 'SF': '{:.2%}', 'PF': '{:.2%}', 'C': '{:.2%}'}

@st.cache_resource(ttl = 600)
def init_baselines():
    collection = db["MLB_Hitters_DB"] 
    cursor = collection.find()  # Finds all documents in the collection
    
    raw_display = pd.DataFrame(list(cursor))
    hitter_gamelog_table = raw_display[raw_display['NameASCII'] != ""]
    hitter_gamelog_table = hitter_gamelog_table[['NameASCII', 'Team', 'Date', 'G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                                 'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']]
    
    data_cols = hitter_gamelog_table.columns.drop(['NameASCII', 'Team', 'Date'])
    hitter_gamelog_table[data_cols] = hitter_gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
    
    hitter_gamelog_table = hitter_gamelog_table.set_axis(['Player', 'Team', 'Date', 'G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                                          'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%'], axis=1)
    
    collection = db["rotations"] 
    cursor = collection.find()  # Finds all documents in the collection
    
    raw_display = pd.DataFrame(list(cursor))
    pitcher_gamelog_table = raw_display[raw_display['NameASCII'] != ""]
    
    pitcher_gamelog_table = pitcher_gamelog_table[['NameASCII', 'Team', 'Date', 'G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                                   'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
                                                   'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA (sc)', 'vFT (sc)', 'vFC (sc)', 'vFS (sc)', 'vFO (sc)', 'vSI (sc)',
                                                   'vSL (sc)', 'vCU (sc)', 'vKC (sc)', 'vEP (sc)', 'vCH (sc)', 'vSC (sc)', 'vKN (sc)']]
    
    pitcher_gamelog_table.replace("", np.nan, inplace=True)
    data_cols = pitcher_gamelog_table.columns.drop(['NameASCII', 'Team', 'Date'])
    pitcher_gamelog_table[data_cols] = pitcher_gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
    
    pitcher_gamelog_table = pitcher_gamelog_table.set_axis(['Player', 'Team', 'Date', 'G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                                            'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
                                                            'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
                                                            'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN'], axis=1)
    
    timestamp = pitcher_gamelog_table['Date'].max()
    
    return hitter_gamelog_table, pitcher_gamelog_table, timestamp

@st.cache_data(show_spinner=False)
def hitter_seasonlong_build(data_sample):
    season_long_table = data_sample[['Player', 'Team']]
    season_long_table['G'] = data_sample.groupby(['Player', 'Team'], sort=False)['G'].transform('sum').astype(int)
    season_long_table['AB'] = data_sample.groupby(['Player', 'Team'], sort=False)['AB'].transform('sum').astype(int)
    season_long_table['PA'] = data_sample.groupby(['Player', 'Team'], sort=False)['PA'].transform('sum').astype(int)
    season_long_table['H'] = data_sample.groupby(['Player', 'Team'], sort=False)['H'].transform('sum').astype(int)
    season_long_table['1B'] = data_sample.groupby(['Player', 'Team'], sort=False)['1B'].transform('sum').astype(int)
    season_long_table['2B'] = data_sample.groupby(['Player', 'Team'], sort=False)['2B'].transform('sum').astype(int)
    season_long_table['3B'] = data_sample.groupby(['Player', 'Team'], sort=False)['3B'].transform('sum').astype(int)
    season_long_table['HR'] = data_sample.groupby(['Player', 'Team'], sort=False)['HR'].transform('sum').astype(int)
    season_long_table['R'] = data_sample.groupby(['Player', 'Team'], sort=False)['R'].transform('sum').astype(int)
    season_long_table['RBI'] = data_sample.groupby(['Player', 'Team'], sort=False)['RBI'].transform('sum').astype(int)
    season_long_table['BB'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB'].transform('sum').astype(int)
    season_long_table['IBB'] = data_sample.groupby(['Player', 'Team'], sort=False)['IBB'].transform('sum').astype(int)
    season_long_table['SO'] = data_sample.groupby(['Player', 'Team'], sort=False)['SO'].transform('sum').astype(int)
    season_long_table['HBP'] = data_sample.groupby(['Player', 'Team'], sort=False)['HBP'].transform('sum').astype(int)
    season_long_table['SF'] = data_sample.groupby(['Player', 'Team'], sort=False)['SF'].transform('sum').astype(int)
    season_long_table['SH'] = data_sample.groupby(['Player', 'Team'], sort=False)['SH'].transform('sum').astype(int)
    season_long_table['GDP'] = data_sample.groupby(['Player', 'Team'], sort=False)['GDP'].transform('sum').astype(int)
    season_long_table['SB'] = data_sample.groupby(['Player', 'Team'], sort=False)['SB'].transform('sum').astype(int)
    season_long_table['CS'] = data_sample.groupby(['Player', 'Team'], sort=False)['CS'].transform('sum').astype(int)
    season_long_table['Avg AVG'] = data_sample.groupby(['Player', 'Team'], sort=False)['AVG'].transform('mean').astype(int)
    season_long_table['Avg SLG'] = data_sample.groupby(['Player', 'Team'], sort=False)['SLG'].transform('mean').astype(int)
    season_long_table['Avg wRC+'] = data_sample.groupby(['Player', 'Team'], sort=False)['wRC+'].transform('mean').astype(int)
    season_long_table['Avg LD%'] = data_sample.groupby(['Player', 'Team'], sort=False)['LD%'].transform('mean').astype(int)
    season_long_table['Avg GB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['GB%'].transform('mean').astype(float)
    season_long_table['Avg FB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['FB%'].transform('mean').astype(float)
    season_long_table['Avg Hard%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hard%'].transform('mean').astype(float)
    season_long_table['Barrels'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrels'].transform('sum').astype(int)
    season_long_table['Avg Barrel%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrel%'].transform('mean').astype(float)
    season_long_table = season_long_table.drop_duplicates(subset='Player')

    season_long_table = season_long_table.sort_values(by='Avg wRC+', ascending=False)
    
    season_long_table = season_long_table.set_axis(['Player', 'Team', 'Date', 'G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                                    'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%'], axis=1)

    return season_long_table

@st.cache_data(show_spinner=False)
def pitcher_seasonlong_build(data_sample):
    season_long_table = data_sample[['Player', 'Team']]
    season_long_table['G'] = data_sample.groupby(['Player', 'Team'], sort=False)['G'].transform('sum').astype(int)
    season_long_table['GS'] = data_sample.groupby(['Player', 'Team'], sort=False)['GS'].transform('sum').astype(int)
    season_long_table['CG'] = data_sample.groupby(['Player', 'Team'], sort=False)['CG'].transform('sum').astype(int)
    season_long_table['W'] = data_sample.groupby(['Player', 'Team'], sort=False)['W'].transform('sum').astype(int)
    season_long_table['L'] = data_sample.groupby(['Player', 'Team'], sort=False)['L'].transform('sum').astype(int)
    season_long_table['Avg ERA'] = data_sample.groupby(['Player', 'Team'], sort=False)['ERA'].transform('mean').astype(float)
    season_long_table['ShO'] = data_sample.groupby(['Player', 'Team'], sort=False)['ShO'].transform('sum').astype(int)
    season_long_table['SV'] = data_sample.groupby(['Player', 'Team'], sort=False)['SV'].transform('sum').astype(int)
    season_long_table['HLD'] = data_sample.groupby(['Player', 'Team'], sort=False)['HLD'].transform('sum').astype(int)
    season_long_table['BS'] = data_sample.groupby(['Player', 'Team'], sort=False)['BS'].transform('sum').astype(int)
    season_long_table['IP'] = data_sample.groupby(['Player', 'Team'], sort=False)['IP'].transform('sum').astype(int)
    season_long_table['TBF'] = data_sample.groupby(['Player', 'Team'], sort=False)['TBF'].transform('sum').astype(int)
    season_long_table['H'] = data_sample.groupby(['Player', 'Team'], sort=False)['H'].transform('sum').astype(int)
    season_long_table['R'] = data_sample.groupby(['Player', 'Team'], sort=False)['R'].transform('sum').astype(int)
    season_long_table['ER'] = data_sample.groupby(['Player', 'Team'], sort=False)['ER'].transform('sum').astype(int)
    season_long_table['HR'] = data_sample.groupby(['Player', 'Team'], sort=False)['HR'].transform('sum').astype(int)
    season_long_table['BB'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB'].transform('sum').astype(int)
    season_long_table['IBB'] = data_sample.groupby(['Player', 'Team'], sort=False)['IBB'].transform('sum').astype(int)
    season_long_table['HBP'] = data_sample.groupby(['Player', 'Team'], sort=False)['HBP'].transform('sum').astype(int)
    season_long_table['WP'] = data_sample.groupby(['Player', 'Team'], sort=False)['WP'].transform('sum').astype(int)
    season_long_table['BK'] = data_sample.groupby(['Player', 'Team'], sort=False)['BK'].transform('sum').astype(int)
    season_long_table['SO'] = data_sample.groupby(['Player', 'Team'], sort=False)['SO'].transform('sum').astype(int)
    season_long_table['Avg K/9'] = data_sample.groupby(['Player', 'Team'], sort=False)['K/9'].transform('mean').astype(float)
    season_long_table['Avg BB/9'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB/9'].transform('mean').astype(float)
    season_long_table['Avg WHIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['WHIP'].transform('mean').astype(float)
    season_long_table['Avg BABIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['BABIP'].transform('mean').astype(float)
    season_long_table['Avg LOB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['LOB%'].transform('mean').astype(int)
    season_long_table['Avg FIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['FIP'].transform('mean').astype(float)
    season_long_table['Avg xFIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['xFIP'].transform('mean').astype(float)
    season_long_table['Avg K%'] = data_sample.groupby(['Player', 'Team'], sort=False)['K%'].transform('mean').astype(float)
    season_long_table['Avg BB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB%'].transform('mean').astype(float)
    season_long_table['Avg SIERA'] = data_sample.groupby(['Player', 'Team'], sort=False)['SIERA'].transform('mean').astype(float)
    season_long_table['Avg LD%'] = data_sample.groupby(['Player', 'Team'], sort=False)['LD%'].transform('mean').astype(float)
    season_long_table['Avg GB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['GB%'].transform('mean').astype(float)
    season_long_table['Avg FB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['FB%'].transform('mean').astype(float)
    season_long_table['Avg HR/FB'] = data_sample.groupby(['Player', 'Team'], sort=False)['HR/FB'].transform('mean').astype(float)
    season_long_table['Avg Hard%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hard%'].transform('mean').astype(float)
    season_long_table['Barrels'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrels'].transform('sum').astype(int)
    season_long_table['Avg Barrel%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrel%'].transform('mean').astype(float)
    season_long_table['Avg xERA'] = data_sample.groupby(['Player', 'Team'], sort=False)['xERA'].transform('mean').astype(float)
    season_long_table['Avg vFA'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFA'].transform('mean').astype(float)
    season_long_table['Avg vFT'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFT'].transform('mean').astype(float)
    season_long_table['Avg vFC'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFC'].transform('mean').astype(float)
    season_long_table['Avg vFS'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFS'].transform('mean').astype(float)
    season_long_table['Avg vFO'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFO'].transform('mean').astype(float)
    season_long_table['Avg vSI'] = data_sample.groupby(['Player', 'Team'], sort=False)['vSI'].transform('mean').astype(float)
    season_long_table['Avg vSL'] = data_sample.groupby(['Player', 'Team'], sort=False)['vSL'].transform('mean').astype(float)
    season_long_table['Avg vCU'] = data_sample.groupby(['Player', 'Team'], sort=False)['vCU'].transform('mean').astype(float)
    season_long_table['Avg vKC'] = data_sample.groupby(['Player', 'Team'], sort=False)['vKC'].transform('mean').astype(float)
    season_long_table['Avg vEP'] = data_sample.groupby(['Player', 'Team'], sort=False)['vEP'].transform('mean').astype(float)
    season_long_table['Avg vCH'] = data_sample.groupby(['Player', 'Team'], sort=False)['vCH'].transform('mean').astype(float)
    season_long_table['Avg vSC'] = data_sample.groupby(['Player', 'Team'], sort=False)['vSC'].transform('mean').astype(float)
    season_long_table['Avg vKN'] = data_sample.groupby(['Player', 'Team'], sort=False)['vKN'].transform('mean').astype(float)
    season_long_table = season_long_table.drop_duplicates(subset='Player')

    season_long_table = season_long_table.sort_values(by='SO', ascending=False)
    
    season_long_table = season_long_table.set_axis(['Player', 'Team', 'Date', 'G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                                    'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
                                                    'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
                                                    'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN'], axis=1)

    return season_long_table

@st.cache_data(show_spinner=False)
def split_frame(input_df, rows):
    df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)]
    return df

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

hitter_gamelog_table, pitcher_gamelog_table, timestamp = init_baselines()
t_stamp = f"Updated through: " + str(timestamp) + f" CST"

basic_cols = ['Player', 'Team']

basic_season_cols = ['Team']

hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                    'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']

season_hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                           'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%']

pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                     'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
                     'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
                     'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN']

season_pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                            'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
                            'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
                            'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN']

indv_teams = hitter_gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_hitters = hitter_gamelog_table.drop_duplicates(subset='Player')
total_hitters = indv_hitters.Player.values.tolist()
indv_pitchers = hitter_gamelog_table.drop_duplicates(subset='Player')
total_pitchers = indv_pitchers.Player.values.tolist()
total_dates = hitter_gamelog_table.Date.values.tolist()

tab1, tab2 = st.tabs(['Hitter Gamelogs', 'Pitcher Gamelogs'])

with tab1:
    st.info(t_stamp)
    col1, col2 = st.columns([1, 9])
    with col1:
        if st.button("Reset Data", key='reset1'):
                  st.cache_data.clear()
                  hitter_gamelog_table, pitcher_gamelog_table, timestamp = init_baselines()
                  t_stamp = f"Updated through: " + str(timestamp) + f" CST"

                  basic_cols = ['Player', 'Team']

                  basic_season_cols = ['Team']

                  hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                      'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']

                  season_hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                             'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%']

                  pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                       'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
                                       'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
                                       'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN']

                  season_pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                              'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
                                              'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
                                              'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN']

                  indv_teams = hitter_gamelog_table.drop_duplicates(subset='Team')
                  total_teams = indv_teams.Team.values.tolist()
                  indv_hitters = hitter_gamelog_table.drop_duplicates(subset='Player')
                  total_hitters = indv_hitters.Player.values.tolist()
                  indv_pitchers = hitter_gamelog_table.drop_duplicates(subset='Player')
                  total_pitchers = indv_pitchers.Player.values.tolist()
                  total_dates = hitter_gamelog_table.Date.values.tolist()
        
        split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='split_var1')
        split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
        
        if split_var2 == 'Specific Teams':
            team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1')
        elif split_var2 == 'All':
            team_var1 = total_teams
            
        split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3')
        
        if split_var3 == 'Specific Dates':
            low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date')
            if low_date is not None:
                low_date = pd.to_datetime(low_date).date()
            high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date')
            if high_date is not None:
                high_date = pd.to_datetime(high_date).date()
        elif split_var3 == 'All':
            low_date = hitter_gamelog_table['Date'].min()
            high_date = hitter_gamelog_table['Date'].max()
        
        split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='split_var4')
        
        if split_var4 == 'Specific Players':
            player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_hitters, key='player_var1')
        elif split_var4 == 'All':
            player_var1 = total_hitters
    
    with col2:
        working_data = hitter_gamelog_table
        if split_var1 == 'Season Logs':
            choose_cols = st.container()
            with choose_cols:
                choose_disp = st.multiselect('Which stats would you like to view?', options = season_hitter_data_cols, default = season_hitter_data_cols, key='col_display')
            disp_stats = basic_season_cols + choose_disp
            display = st.container()
            working_data = working_data[working_data['Date'] >= low_date]
            working_data = working_data[working_data['Date'] <= high_date]
            working_data = working_data[working_data['Team'].isin(team_var1)]
            working_data = working_data[working_data['Player'].isin(player_var1)]
            season_long_table = hitter_seasonlong_build(working_data)
            season_long_table = season_long_table.set_index('Player')
            season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
            display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)  
            st.download_button(
                    label="Export hitter seasonlogs Model",
                    data=convert_df_to_csv(season_long_table),
                    file_name='Seasonlogs_Hitter_View.csv',
                    mime='text/csv',
            )
            
        elif split_var1 == 'Gamelogs':
            choose_cols = st.container()
            with choose_cols:
                choose_disp_gamelog = st.multiselect('Which stats would you like to view?', options = hitter_data_cols, default = hitter_data_cols, key='choose_disp_gamelog')
            gamelog_disp_stats = basic_cols + choose_disp_gamelog
            working_data = working_data[working_data['Date'] >= low_date]
            working_data = working_data[working_data['Date'] <= high_date]
            working_data = working_data[working_data['Team'].isin(team_var1)]
            working_data = working_data[working_data['Player'].isin(player_var1)]
            working_data = working_data.reset_index(drop=True)
            gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
            display = st.container()
        
            bottom_menu = st.columns((4, 1, 1))
            with bottom_menu[2]:
                batch_size = st.selectbox("Page Size", options=[25, 50, 100])
            with bottom_menu[1]:
                total_pages = (
                    int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
                )
                current_page = st.number_input(
                    "Page", min_value=1, max_value=total_pages, step=1
                )
            with bottom_menu[0]:
                st.markdown(f"Page **{current_page}** of **{total_pages}** ")
            
            
            pages = split_frame(gamelog_data, batch_size)
            # pages = pages.set_index('Player')
            display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
            st.download_button(
                    label="Export hitter gamelogs model",
                    data=convert_df_to_csv(gamelog_data),
                    file_name='Gamelogs_Hitter_View.csv',
                    mime='text/csv',
            )

with tab2:
    st.info(t_stamp)
    col1, col2 = st.columns([1, 9])
    with col1:
        if st.button("Reset Data", key='reset2'):
                  st.cache_data.clear()
                  hitter_gamelog_table, pitcher_gamelog_table, timestamp = init_baselines()
                  t_stamp = f"Updated through: " + str(timestamp) + f" CST"

                  basic_cols = ['Player', 'Team']

                  basic_season_cols = ['Team']

                  hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                      'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']

                  season_hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                             'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%']

                  pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                       'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
                                       'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
                                       'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN']

                  season_pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                              'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
                                              'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
                                              'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN']

                  indv_teams = hitter_gamelog_table.drop_duplicates(subset='Team')
                  total_teams = indv_teams.Team.values.tolist()
                  indv_hitters = hitter_gamelog_table.drop_duplicates(subset='Player')
                  total_hitters = indv_hitters.Player.values.tolist()
                  indv_pitchers = hitter_gamelog_table.drop_duplicates(subset='Player')
                  total_pitchers = indv_pitchers.Player.values.tolist()
                  total_dates = hitter_gamelog_table.Date.values.tolist()
        
        split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='sp_split_var1')
        split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='sp_split_var2')
        
        if split_var2 == 'Specific Teams':
            team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='sp_team_var1')
        elif split_var2 == 'All':
            team_var1 = total_teams
            
        split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='sp_split_var3')
        
        if split_var3 == 'Specific Dates':
            low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='sp_low_date')
            if low_date is not None:
                low_date = pd.to_datetime(low_date).date()
            high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='sp_high_date')
            if high_date is not None:
                high_date = pd.to_datetime(high_date).date()
        elif split_var3 == 'All':
            low_date = hitter_gamelog_table['Date'].min()
            high_date = hitter_gamelog_table['Date'].max()
        
        split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='sp_split_var4')
        
        if split_var4 == 'Specific Players':
            player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_hitters, key='sp_player_var1')
        elif split_var4 == 'All':
            player_var1 = total_hitters
    
    with col2:
        working_data = hitter_gamelog_table
        if split_var1 == 'Season Logs':
            choose_cols = st.container()
            with choose_cols:
                choose_disp = st.multiselect('Which stats would you like to view?', options = season_hitter_data_cols, default = season_hitter_data_cols, key='sp_col_display')
            disp_stats = basic_season_cols + choose_disp
            display = st.container()
            working_data = working_data[working_data['Date'] >= low_date]
            working_data = working_data[working_data['Date'] <= high_date]
            working_data = working_data[working_data['Team'].isin(team_var1)]
            working_data = working_data[working_data['Player'].isin(player_var1)]
            season_long_table = hitter_seasonlong_build(working_data)
            season_long_table = season_long_table.set_index('Player')
            season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
            display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)  
            st.download_button(
                    label="Export pitcher seasonlogs Model",
                    data=convert_df_to_csv(season_long_table),
                    file_name='Seasonlogs_Pitcher_View.csv',
                    mime='text/csv',
            )
            
        elif split_var1 == 'Gamelogs':
            choose_cols = st.container()
            with choose_cols:
                choose_disp_gamelog = st.multiselect('Which stats would you like to view?', options = hitter_data_cols, default = hitter_data_cols, key='sp_choose_disp_gamelog')
            gamelog_disp_stats = basic_cols + choose_disp_gamelog
            working_data = working_data[working_data['Date'] >= low_date]
            working_data = working_data[working_data['Date'] <= high_date]
            working_data = working_data[working_data['Team'].isin(team_var1)]
            working_data = working_data[working_data['Player'].isin(player_var1)]
            working_data = working_data.reset_index(drop=True)
            gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
            display = st.container()
        
            bottom_menu = st.columns((4, 1, 1))
            with bottom_menu[2]:
                batch_size = st.selectbox("Page Size", options=[25, 50, 100])
            with bottom_menu[1]:
                total_pages = (
                    int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
                )
                current_page = st.number_input(
                    "Page", min_value=1, max_value=total_pages, step=1
                )
            with bottom_menu[0]:
                st.markdown(f"Page **{current_page}** of **{total_pages}** ")
            
            
            pages = split_frame(gamelog_data, batch_size)
            # pages = pages.set_index('Player')
            display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
            st.download_button(
                    label="Export pitcher gamelogs model",
                    data=convert_df_to_csv(gamelog_data),
                    file_name='Gamelogs_Hitter_View.csv',
                    mime='text/csv',
            )