File size: 60,569 Bytes
3293039
 
 
 
 
 
 
 
 
 
 
 
b156c62
2334a98
8e81d11
67809c5
3293039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a54c1a
 
 
3293039
 
 
6a54c1a
3293039
1cbda44
3293039
 
 
059a055
3293039
322b4b6
3293039
 
 
78b3cde
322b4b6
29c7667
 
322b4b6
 
3293039
322b4b6
 
fff3307
b88173d
3293039
 
 
322b4b6
78b3cde
322b4b6
 
 
 
 
29c7667
 
322b4b6
 
 
 
 
 
 
3293039
322b4b6
3293039
322b4b6
3293039
 
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
001d4b3
 
 
 
322b4b6
 
 
 
 
3293039
 
322b4b6
3293039
1432dff
322b4b6
3293039
 
 
2720fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
3293039
1432dff
322b4b6
 
 
 
 
3293039
2720fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
 
 
 
 
 
 
 
322b4b6
3293039
322b4b6
a2dcfb8
322b4b6
a2dcfb8
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
 
c691a6a
322b4b6
 
3293039
cd5129e
3293039
 
 
 
 
 
 
322b4b6
 
 
02c26df
322b4b6
02c26df
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
 
c691a6a
322b4b6
 
3293039
2720fe3
3293039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322b4b6
 
3293039
 
 
 
322b4b6
3293039
322b4b6
3293039
 
322b4b6
3293039
 
 
322b4b6
3293039
 
 
 
 
 
322b4b6
3293039
1cb80c7
3293039
1cb80c7
3293039
 
322b4b6
3293039
322b4b6
3293039
 
 
2720fe3
 
 
 
 
 
 
 
 
 
 
 
 
51c92e1
2720fe3
 
 
51c92e1
2720fe3
 
 
 
 
3293039
 
322b4b6
3293039
 
 
 
 
 
 
 
 
 
 
a2dcfb8
3293039
 
 
 
 
 
 
 
 
 
 
 
 
f1380c5
 
 
 
 
 
 
 
322b4b6
3293039
 
 
 
 
 
322b4b6
 
 
02c26df
322b4b6
02c26df
322b4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293039
322b4b6
 
c691a6a
322b4b6
 
3293039
189eaea
30cc90e
3293039
30cc90e
 
 
 
3293039
30cc90e
3293039
30cc90e
 
 
 
 
 
 
 
 
 
3293039
30cc90e
3293039
30cc90e
 
 
 
3293039
 
62071d7
30cc90e
3293039
 
30cc90e
 
322b4b6
30cc90e
 
 
 
62071d7
322b4b6
1cb80c7
322b4b6
1cb80c7
322b4b6
 
 
 
 
 
 
3293039
30cc90e
322b4b6
 
30cc90e
 
 
 
 
 
322b4b6
 
 
3293039
322b4b6
 
a2dcfb8
322b4b6
 
 
 
 
 
 
 
 
3293039
 
322b4b6
3293039
322b4b6
 
 
 
 
 
cd5129e
 
 
 
dca2684
0574705
cd5129e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
983ba74
cd5129e
 
 
983ba74
cd5129e
ae05857
1b289da
cd5129e
 
 
 
 
 
 
 
 
 
f64b2aa
cd5129e
 
 
 
 
 
 
 
f64b2aa
cd5129e
 
 
 
f7b784a
983ba74
 
 
 
f64b2aa
1b289da
 
 
 
 
 
 
 
 
 
 
aa705b2
1b289da
 
 
 
 
 
 
 
aa705b2
1b289da
f64b2aa
f7b784a
 
 
 
 
 
 
 
 
 
 
cb31b56
f7b784a
 
 
 
 
 
 
 
cb31b56
f7b784a
f64b2aa
 
983ba74
ae05857
 
371b7bd
fec0592
0f37bf7
 
 
 
 
6577faa
0f37bf7
2334a98
 
 
ae05857
 
371b7bd
fec0592
6577faa
 
 
 
 
 
 
 
 
 
 
 
8400795
cb610f0
997cb07
6577faa
dca2684
 
 
 
 
371b7bd
fec0592
dca2684
 
fadece8
dca2684
0019427
dca2684
0019427
dca2684
 
 
 
 
 
 
 
cb610f0
997cb07
 
2334a98
 
059a055
0574705
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]
        
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
import time
from io import BytesIO
from pymongo.mongo_client import MongoClient
import matplotlib.pyplot as plt
import certifi
ca = certifi.where()

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }

        uri = "mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority&appName=TestCluster"
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
        db = client["testing_db"]

        gc_con = gspread.service_account_from_dict(credentials, scope)
      
        return gc_con, client, db

gcservice_account, uri = init_conn()

percentages_format = {'PG': '{:.2%}', 'SG': '{:.2%}', 'SF': '{:.2%}', 'PF': '{:.2%}', 'C': '{:.2%}'}

@st.cache_resource(ttl = 599)
def init_baselines():
    collection = db["MLB_Hitters_DB"] 
    cursor = collection.find()  # Finds all documents in the collection
    
    raw_display = pd.DataFrame(list(cursor))
    hitter_gamelog_table = raw_display[['NameASCII', 'Team', 'Date', 'G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                                 'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']]
    hitter_gamelog_table['Date'] = pd.to_datetime(hitter_gamelog_table['Date'])
    hitter_gamelog_table['Date'] = hitter_gamelog_table['Date'].dt.date
    data_cols = hitter_gamelog_table.columns.drop(['NameASCII', 'Team', 'Date'])
    hitter_gamelog_table[data_cols] = hitter_gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
    
    hitter_gamelog_table = hitter_gamelog_table.set_axis(['Player', 'Team', 'Date', 'G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                                          'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%'], axis=1)

    collection = db["MLB_Pitchers_DB"] 
    cursor = collection.find()  # Finds all documents in the collection
    
    raw_display = pd.DataFrame(list(cursor))
    
    pitcher_gamelog_table = raw_display[['NameASCII', 'Team', 'Date', 'G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                                   'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
                                                   'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA (sc)', 'vFT (sc)', 'vFC (sc)', 'vFS (sc)', 'vFO (sc)', 'vSI (sc)',
                                                   'vSL (sc)', 'vCU (sc)', 'vKC (sc)', 'vEP (sc)', 'vCH (sc)', 'vSC (sc)', 'vKN (sc)']]
    
    pitcher_gamelog_table.replace("", np.nan, inplace=True)
    pitcher_gamelog_table['Date'] = pd.to_datetime(pitcher_gamelog_table['Date'])
    pitcher_gamelog_table['Date'] = pitcher_gamelog_table['Date'].dt.date
    data_cols = pitcher_gamelog_table.columns.drop(['NameASCII', 'Team', 'Date'])
    pitcher_gamelog_table[data_cols] = pitcher_gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
    
    pitcher_gamelog_table = pitcher_gamelog_table.set_axis(['Player', 'Team', 'Date', 'G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                                            'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
                                                            'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
                                                            'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN'], axis=1)
    
    timestamp = pitcher_gamelog_table['Date'].max()
    
    return hitter_gamelog_table, pitcher_gamelog_table, timestamp

@st.cache_data(show_spinner=False)
def hitter_seasonlong_build(data_sample):
    season_long_table = data_sample[['Player', 'Team']]
    season_long_table['G'] = data_sample.groupby(['Player', 'Team'], sort=False)['G'].transform('sum').astype(int)
    season_long_table['AB'] = data_sample.groupby(['Player', 'Team'], sort=False)['AB'].transform('sum').astype(int)
    season_long_table['PA'] = data_sample.groupby(['Player', 'Team'], sort=False)['PA'].transform('sum').astype(int)
    season_long_table['H'] = data_sample.groupby(['Player', 'Team'], sort=False)['H'].transform('sum').astype(int)
    season_long_table['1B'] = data_sample.groupby(['Player', 'Team'], sort=False)['1B'].transform('sum').astype(int)
    season_long_table['2B'] = data_sample.groupby(['Player', 'Team'], sort=False)['2B'].transform('sum').astype(int)
    season_long_table['3B'] = data_sample.groupby(['Player', 'Team'], sort=False)['3B'].transform('sum').astype(int)
    season_long_table['HR'] = data_sample.groupby(['Player', 'Team'], sort=False)['HR'].transform('sum').astype(int)
    season_long_table['R'] = data_sample.groupby(['Player', 'Team'], sort=False)['R'].transform('sum').astype(int)
    season_long_table['RBI'] = data_sample.groupby(['Player', 'Team'], sort=False)['RBI'].transform('sum').astype(int)
    season_long_table['BB'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB'].transform('sum').astype(int)
    season_long_table['IBB'] = data_sample.groupby(['Player', 'Team'], sort=False)['IBB'].transform('sum').astype(int)
    season_long_table['SO'] = data_sample.groupby(['Player', 'Team'], sort=False)['SO'].transform('sum').astype(int)
    season_long_table['HBP'] = data_sample.groupby(['Player', 'Team'], sort=False)['HBP'].transform('sum').astype(int)
    season_long_table['SF'] = data_sample.groupby(['Player', 'Team'], sort=False)['SF'].transform('sum').astype(int)
    season_long_table['SH'] = data_sample.groupby(['Player', 'Team'], sort=False)['SH'].transform('sum').astype(int)
    season_long_table['GDP'] = data_sample.groupby(['Player', 'Team'], sort=False)['GDP'].transform('sum').astype(int)
    season_long_table['SB'] = data_sample.groupby(['Player', 'Team'], sort=False)['SB'].transform('sum').astype(int)
    season_long_table['CS'] = data_sample.groupby(['Player', 'Team'], sort=False)['CS'].transform('sum').astype(int)
    season_long_table['Avg AVG'] = data_sample.groupby(['Player', 'Team'], sort=False)['AVG'].transform('mean').astype(float)
    season_long_table['Avg SLG'] = data_sample.groupby(['Player', 'Team'], sort=False)['SLG'].transform('mean').astype(float)
    season_long_table['Avg wRC+'] = data_sample.groupby(['Player', 'Team'], sort=False)['wRC+'].transform('mean').astype(float)
    season_long_table['Avg LD%'] = data_sample.groupby(['Player', 'Team'], sort=False)['LD%'].transform('mean').astype(float)
    season_long_table['Avg GB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['GB%'].transform('mean').astype(float)
    season_long_table['Avg FB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['FB%'].transform('mean').astype(float)
    season_long_table['Avg Hard%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hard%'].transform('mean').astype(float)
    season_long_table['Barrels'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrels'].transform('sum').astype(int)
    season_long_table['Avg Barrel%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrel%'].transform('mean').astype(float)
    season_long_table = season_long_table.drop_duplicates(subset='Player')

    season_long_table = season_long_table.sort_values(by='Avg wRC+', ascending=False)
    
    season_long_table = season_long_table.set_axis(['Player', 'Team', 'G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                                    'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%'], axis=1)

    return season_long_table

@st.cache_data(show_spinner=False)
def hitter_team_build(data_sample):
    season_long_table = data_sample[['Team']]
    season_long_table['G'] = data_sample.groupby(['Team'], sort=False)['G'].transform('sum').astype(int)
    season_long_table['AB'] = data_sample.groupby(['Team'], sort=False)['AB'].transform('sum').astype(int)
    season_long_table['PA'] = data_sample.groupby(['Team'], sort=False)['PA'].transform('sum').astype(int)
    season_long_table['H'] = data_sample.groupby(['Team'], sort=False)['H'].transform('sum').astype(int)
    season_long_table['1B'] = data_sample.groupby(['Team'], sort=False)['1B'].transform('sum').astype(int)
    season_long_table['2B'] = data_sample.groupby(['Team'], sort=False)['2B'].transform('sum').astype(int)
    season_long_table['3B'] = data_sample.groupby(['Team'], sort=False)['3B'].transform('sum').astype(int)
    season_long_table['HR'] = data_sample.groupby(['Team'], sort=False)['HR'].transform('sum').astype(int)
    season_long_table['R'] = data_sample.groupby(['Team'], sort=False)['R'].transform('sum').astype(int)
    season_long_table['RBI'] = data_sample.groupby(['Team'], sort=False)['RBI'].transform('sum').astype(int)
    season_long_table['BB'] = data_sample.groupby(['Team'], sort=False)['BB'].transform('sum').astype(int)
    season_long_table['IBB'] = data_sample.groupby(['Team'], sort=False)['IBB'].transform('sum').astype(int)
    season_long_table['SO'] = data_sample.groupby(['Team'], sort=False)['SO'].transform('sum').astype(int)
    season_long_table['HBP'] = data_sample.groupby(['Team'], sort=False)['HBP'].transform('sum').astype(int)
    season_long_table['SF'] = data_sample.groupby(['Team'], sort=False)['SF'].transform('sum').astype(int)
    season_long_table['SH'] = data_sample.groupby(['Team'], sort=False)['SH'].transform('sum').astype(int)
    season_long_table['GDP'] = data_sample.groupby(['Team'], sort=False)['GDP'].transform('sum').astype(int)
    season_long_table['SB'] = data_sample.groupby(['Team'], sort=False)['SB'].transform('sum').astype(int)
    season_long_table['CS'] = data_sample.groupby(['Team'], sort=False)['CS'].transform('sum').astype(int)
    season_long_table['Avg AVG'] = data_sample.groupby(['Team'], sort=False)['AVG'].transform('mean').astype(float)
    season_long_table['Avg SLG'] = data_sample.groupby(['Team'], sort=False)['SLG'].transform('mean').astype(float)
    season_long_table['Avg wRC+'] = data_sample.groupby(['Team'], sort=False)['wRC+'].transform('mean').astype(float)
    season_long_table['Avg LD%'] = data_sample.groupby(['Team'], sort=False)['LD%'].transform('mean').astype(float)
    season_long_table['Avg GB%'] = data_sample.groupby(['Team'], sort=False)['GB%'].transform('mean').astype(float)
    season_long_table['Avg FB%'] = data_sample.groupby(['Team'], sort=False)['FB%'].transform('mean').astype(float)
    season_long_table['Avg Hard%'] = data_sample.groupby(['Team'], sort=False)['Hard%'].transform('mean').astype(float)
    season_long_table['Barrels'] = data_sample.groupby(['Team'], sort=False)['Barrels'].transform('sum').astype(int)
    season_long_table['Avg Barrel%'] = data_sample.groupby(['Team'], sort=False)['Barrel%'].transform('mean').astype(float)
    season_long_table = season_long_table.drop_duplicates(subset='Team')

    season_long_table = season_long_table.sort_values(by='Avg wRC+', ascending=False)
    
    season_long_table = season_long_table.set_axis(['Team', 'G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                                    'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%'], axis=1)

    return season_long_table

@st.cache_data(show_spinner=False)
def pitcher_seasonlong_build(data_sample):
    season_long_table = data_sample[['Player', 'Team']]
    season_long_table['G'] = data_sample.groupby(['Player', 'Team'], sort=False)['G'].transform('sum').astype(int)
    season_long_table['GS'] = data_sample.groupby(['Player', 'Team'], sort=False)['GS'].transform('sum').astype(int)
    season_long_table['CG'] = data_sample.groupby(['Player', 'Team'], sort=False)['CG'].transform('sum').astype(int)
    season_long_table['W'] = data_sample.groupby(['Player', 'Team'], sort=False)['W'].transform('sum').astype(int)
    season_long_table['L'] = data_sample.groupby(['Player', 'Team'], sort=False)['L'].transform('sum').astype(int)
    season_long_table['Avg ERA'] = data_sample.groupby(['Player', 'Team'], sort=False)['ERA'].transform('mean').astype(float)
    season_long_table['ShO'] = data_sample.groupby(['Player', 'Team'], sort=False)['ShO'].transform('sum').astype(int)
    season_long_table['SV'] = data_sample.groupby(['Player', 'Team'], sort=False)['SV'].transform('sum').astype(int)
    season_long_table['HLD'] = data_sample.groupby(['Player', 'Team'], sort=False)['HLD'].transform('sum').astype(int)
    season_long_table['BS'] = data_sample.groupby(['Player', 'Team'], sort=False)['BS'].transform('sum').astype(int)
    season_long_table['IP'] = data_sample.groupby(['Player', 'Team'], sort=False)['IP'].transform('sum').astype(int)
    season_long_table['TBF'] = data_sample.groupby(['Player', 'Team'], sort=False)['TBF'].transform('sum').astype(int)
    season_long_table['H'] = data_sample.groupby(['Player', 'Team'], sort=False)['H'].transform('sum').astype(int)
    season_long_table['R'] = data_sample.groupby(['Player', 'Team'], sort=False)['R'].transform('sum').astype(int)
    season_long_table['ER'] = data_sample.groupby(['Player', 'Team'], sort=False)['ER'].transform('sum').astype(int)
    season_long_table['HR'] = data_sample.groupby(['Player', 'Team'], sort=False)['HR'].transform('sum').astype(int)
    season_long_table['BB'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB'].transform('sum').astype(int)
    season_long_table['IBB'] = data_sample.groupby(['Player', 'Team'], sort=False)['IBB'].transform('sum').astype(int)
    season_long_table['HBP'] = data_sample.groupby(['Player', 'Team'], sort=False)['HBP'].transform('sum').astype(int)
    season_long_table['WP'] = data_sample.groupby(['Player', 'Team'], sort=False)['WP'].transform('sum').astype(int)
    season_long_table['BK'] = data_sample.groupby(['Player', 'Team'], sort=False)['BK'].transform('sum').astype(int)
    season_long_table['SO'] = data_sample.groupby(['Player', 'Team'], sort=False)['SO'].transform('sum').astype(int)
    season_long_table['Avg K/9'] = data_sample.groupby(['Player', 'Team'], sort=False)['K/9'].transform('mean').astype(float)
    season_long_table['Avg BB/9'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB/9'].transform('mean').astype(float)
    season_long_table['Avg WHIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['WHIP'].transform('mean').astype(float)
    season_long_table['Avg BABIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['BABIP'].transform('mean').astype(float)
    season_long_table['Avg LOB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['LOB%'].transform('mean').astype(int)
    season_long_table['Avg FIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['FIP'].transform('mean').astype(float)
    season_long_table['Avg xFIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['xFIP'].transform('mean').astype(float)
    season_long_table['Avg K%'] = data_sample.groupby(['Player', 'Team'], sort=False)['K%'].transform('mean').astype(float)
    season_long_table['Avg BB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB%'].transform('mean').astype(float)
    season_long_table['Avg SIERA'] = data_sample.groupby(['Player', 'Team'], sort=False)['SIERA'].transform('mean').astype(float)
    season_long_table['Avg LD%'] = data_sample.groupby(['Player', 'Team'], sort=False)['LD%'].transform('mean').astype(float)
    season_long_table['Avg GB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['GB%'].transform('mean').astype(float)
    season_long_table['Avg FB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['FB%'].transform('mean').astype(float)
    season_long_table['Avg HR/FB'] = data_sample.groupby(['Player', 'Team'], sort=False)['HR/FB'].transform('mean').astype(float)
    season_long_table['Avg Hard%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hard%'].transform('mean').astype(float)
    season_long_table['Barrels'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrels'].transform('sum').astype(int)
    season_long_table['Avg Barrel%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrel%'].transform('mean').astype(float)
    season_long_table['Avg xERA'] = data_sample.groupby(['Player', 'Team'], sort=False)['xERA'].transform('mean').astype(float)
    season_long_table['Avg vFA'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFA'].transform('mean').astype(float)
    season_long_table['Avg vFT'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFT'].transform('mean').astype(float)
    season_long_table['Avg vFC'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFC'].transform('mean').astype(float)
    season_long_table['Avg vFS'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFS'].transform('mean').astype(float)
    season_long_table['Avg vFO'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFO'].transform('mean').astype(float)
    season_long_table['Avg vSI'] = data_sample.groupby(['Player', 'Team'], sort=False)['vSI'].transform('mean').astype(float)
    season_long_table['Avg vSL'] = data_sample.groupby(['Player', 'Team'], sort=False)['vSL'].transform('mean').astype(float)
    season_long_table['Avg vCU'] = data_sample.groupby(['Player', 'Team'], sort=False)['vCU'].transform('mean').astype(float)
    season_long_table['Avg vKC'] = data_sample.groupby(['Player', 'Team'], sort=False)['vKC'].transform('mean').astype(float)
    season_long_table['Avg vEP'] = data_sample.groupby(['Player', 'Team'], sort=False)['vEP'].transform('mean').astype(float)
    season_long_table['Avg vCH'] = data_sample.groupby(['Player', 'Team'], sort=False)['vCH'].transform('mean').astype(float)
    season_long_table['Avg vSC'] = data_sample.groupby(['Player', 'Team'], sort=False)['vSC'].transform('mean').astype(float)
    season_long_table['Avg vKN'] = data_sample.groupby(['Player', 'Team'], sort=False)['vKN'].transform('mean').astype(float)
    season_long_table = season_long_table.drop_duplicates(subset='Player')

    season_long_table = season_long_table.sort_values(by='SO', ascending=False)
    
    season_long_table = season_long_table.set_axis(['Player', 'Team', 'G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                                    'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
                                                    'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
                                                    'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN'], axis=1)

    return season_long_table

@st.cache_data(show_spinner=False)
def pitcher_team_build(data_sample):
    season_long_table = data_sample[['Team']]
    season_long_table['G'] = data_sample.groupby(['Team'], sort=False)['G'].transform('sum').astype(int)
    season_long_table['GS'] = data_sample.groupby(['Team'], sort=False)['GS'].transform('sum').astype(int)
    season_long_table['CG'] = data_sample.groupby(['Team'], sort=False)['CG'].transform('sum').astype(int)
    season_long_table['W'] = data_sample.groupby(['Team'], sort=False)['W'].transform('sum').astype(int)
    season_long_table['L'] = data_sample.groupby(['Team'], sort=False)['L'].transform('sum').astype(int)
    season_long_table['Avg ERA'] = data_sample.groupby(['Team'], sort=False)['ERA'].transform('mean').astype(float)
    season_long_table['ShO'] = data_sample.groupby(['Team'], sort=False)['ShO'].transform('sum').astype(int)
    season_long_table['SV'] = data_sample.groupby(['Team'], sort=False)['SV'].transform('sum').astype(int)
    season_long_table['HLD'] = data_sample.groupby(['Team'], sort=False)['HLD'].transform('sum').astype(int)
    season_long_table['BS'] = data_sample.groupby(['Team'], sort=False)['BS'].transform('sum').astype(int)
    season_long_table['IP'] = data_sample.groupby(['Team'], sort=False)['IP'].transform('sum').astype(int)
    season_long_table['TBF'] = data_sample.groupby(['Team'], sort=False)['TBF'].transform('sum').astype(int)
    season_long_table['H'] = data_sample.groupby(['Team'], sort=False)['H'].transform('sum').astype(int)
    season_long_table['R'] = data_sample.groupby(['Team'], sort=False)['R'].transform('sum').astype(int)
    season_long_table['ER'] = data_sample.groupby(['Team'], sort=False)['ER'].transform('sum').astype(int)
    season_long_table['HR'] = data_sample.groupby(['Team'], sort=False)['HR'].transform('sum').astype(int)
    season_long_table['BB'] = data_sample.groupby(['Team'], sort=False)['BB'].transform('sum').astype(int)
    season_long_table['IBB'] = data_sample.groupby(['Team'], sort=False)['IBB'].transform('sum').astype(int)
    season_long_table['HBP'] = data_sample.groupby(['Team'], sort=False)['HBP'].transform('sum').astype(int)
    season_long_table['WP'] = data_sample.groupby(['Team'], sort=False)['WP'].transform('sum').astype(int)
    season_long_table['BK'] = data_sample.groupby(['Team'], sort=False)['BK'].transform('sum').astype(int)
    season_long_table['SO'] = data_sample.groupby(['Team'], sort=False)['SO'].transform('sum').astype(int)
    season_long_table['Avg K/9'] = data_sample.groupby(['Team'], sort=False)['K/9'].transform('mean').astype(float)
    season_long_table['Avg BB/9'] = data_sample.groupby(['Team'], sort=False)['BB/9'].transform('mean').astype(float)
    season_long_table['Avg WHIP'] = data_sample.groupby(['Team'], sort=False)['WHIP'].transform('mean').astype(float)
    season_long_table['Avg BABIP'] = data_sample.groupby(['Team'], sort=False)['BABIP'].transform('mean').astype(float)
    season_long_table['Avg LOB%'] = data_sample.groupby(['Team'], sort=False)['LOB%'].transform('mean').astype(int)
    season_long_table['Avg FIP'] = data_sample.groupby(['Team'], sort=False)['FIP'].transform('mean').astype(float)
    season_long_table['Avg xFIP'] = data_sample.groupby(['Team'], sort=False)['xFIP'].transform('mean').astype(float)
    season_long_table['Avg K%'] = data_sample.groupby(['Team'], sort=False)['K%'].transform('mean').astype(float)
    season_long_table['Avg BB%'] = data_sample.groupby(['Team'], sort=False)['BB%'].transform('mean').astype(float)
    season_long_table['Avg SIERA'] = data_sample.groupby(['Team'], sort=False)['SIERA'].transform('mean').astype(float)
    season_long_table['Avg LD%'] = data_sample.groupby(['Team'], sort=False)['LD%'].transform('mean').astype(float)
    season_long_table['Avg GB%'] = data_sample.groupby(['Team'], sort=False)['GB%'].transform('mean').astype(float)
    season_long_table['Avg FB%'] = data_sample.groupby(['Team'], sort=False)['FB%'].transform('mean').astype(float)
    season_long_table['Avg HR/FB'] = data_sample.groupby(['Team'], sort=False)['HR/FB'].transform('mean').astype(float)
    season_long_table['Avg Hard%'] = data_sample.groupby(['Team'], sort=False)['Hard%'].transform('mean').astype(float)
    season_long_table['Barrels'] = data_sample.groupby(['Team'], sort=False)['Barrels'].transform('sum').astype(int)
    season_long_table['Avg Barrel%'] = data_sample.groupby(['Team'], sort=False)['Barrel%'].transform('mean').astype(float)
    season_long_table['Avg xERA'] = data_sample.groupby(['Team'], sort=False)['xERA'].transform('mean').astype(float)
    season_long_table['Avg vFA'] = data_sample.groupby(['Team'], sort=False)['vFA'].transform('mean').astype(float)
    season_long_table['Avg vFT'] = data_sample.groupby(['Team'], sort=False)['vFT'].transform('mean').astype(float)
    season_long_table['Avg vFC'] = data_sample.groupby(['Team'], sort=False)['vFC'].transform('mean').astype(float)
    season_long_table['Avg vFS'] = data_sample.groupby(['Team'], sort=False)['vFS'].transform('mean').astype(float)
    season_long_table['Avg vFO'] = data_sample.groupby(['Team'], sort=False)['vFO'].transform('mean').astype(float)
    season_long_table['Avg vSI'] = data_sample.groupby(['Team'], sort=False)['vSI'].transform('mean').astype(float)
    season_long_table['Avg vSL'] = data_sample.groupby(['Team'], sort=False)['vSL'].transform('mean').astype(float)
    season_long_table['Avg vCU'] = data_sample.groupby(['Team'], sort=False)['vCU'].transform('mean').astype(float)
    season_long_table['Avg vKC'] = data_sample.groupby(['Team'], sort=False)['vKC'].transform('mean').astype(float)
    season_long_table['Avg vEP'] = data_sample.groupby(['Team'], sort=False)['vEP'].transform('mean').astype(float)
    season_long_table['Avg vCH'] = data_sample.groupby(['Team'], sort=False)['vCH'].transform('mean').astype(float)
    season_long_table['Avg vSC'] = data_sample.groupby(['Team'], sort=False)['vSC'].transform('mean').astype(float)
    season_long_table['Avg vKN'] = data_sample.groupby(['Team'], sort=False)['vKN'].transform('mean').astype(float)
    season_long_table = season_long_table.drop_duplicates(subset='Team')

    season_long_table = season_long_table.sort_values(by='SO', ascending=False)
    
    season_long_table = season_long_table.set_axis(['Team', 'G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                                    'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
                                                    'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
                                                    'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN'], axis=1)

    return season_long_table

@st.cache_data(show_spinner=False)
def split_frame(input_df, rows):
    df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)]
    return df

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

hitter_gamelog_table, pitcher_gamelog_table, timestamp = init_baselines()
t_stamp = f"Updated through: " + str(timestamp) + f" CST"

basic_cols = ['Player', 'Team', 'Date']

basic_season_cols = ['Player', 'Team', 'Date']

hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                    'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']

season_hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                           'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%']

pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                     'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
                     'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
                     'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN']

season_pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                            'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
                            'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
                            'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN']

indv_teams = hitter_gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_hitters = hitter_gamelog_table.drop_duplicates(subset='Player')
total_hitters = indv_hitters.Player.values.tolist()
indv_pitchers = pitcher_gamelog_table.drop_duplicates(subset='Player')
total_pitchers = indv_pitchers.Player.values.tolist()
total_dates = hitter_gamelog_table.Date.values.tolist()

tab1, tab2, tab3 = st.tabs(['Hitter Gamelogs', 'Pitcher Gamelogs', 'Sample Graphs'])

with tab1:
    st.info(t_stamp)
    col1, col2 = st.columns([1, 9])
    with col1:
        if st.button("Reset Data", key='reset1'):
                  st.cache_data.clear()
                  hitter_gamelog_table, pitcher_gamelog_table, timestamp = init_baselines()
                  t_stamp = f"Updated through: " + str(timestamp) + f" CST"

                  basic_cols = ['Player', 'Team', 'Date']

                  basic_season_cols = ['Player', 'Team', 'Date']

                  hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                      'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']

                  season_hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                             'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%']

                  pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                       'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
                                       'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
                                       'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN']

                  season_pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                              'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
                                              'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
                                              'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN']

                  indv_teams = hitter_gamelog_table.drop_duplicates(subset='Team')
                  total_teams = indv_teams.Team.values.tolist()
                  indv_hitters = hitter_gamelog_table.drop_duplicates(subset='Player')
                  total_hitters = indv_hitters.Player.values.tolist()
                  indv_pitchers = pitcher_gamelog_table.drop_duplicates(subset='Player')
                  total_pitchers = indv_pitchers.Player.values.tolist()
                  total_dates = hitter_gamelog_table.Date.values.tolist()
        
        split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Game logs', 'Team Logs'), key='split_var1')
        split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
        
        if split_var2 == 'Specific Teams':
            team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1')
        elif split_var2 == 'All':
            team_var1 = total_teams
            
        split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3')
        
        if split_var3 == 'Specific Dates':
            low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date')
            if low_date is not None:
                low_date = pd.to_datetime(low_date).date()
            high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date')
            if high_date is not None:
                high_date = pd.to_datetime(high_date).date()
        elif split_var3 == 'All':
            low_date = hitter_gamelog_table['Date'].min()
            high_date = hitter_gamelog_table['Date'].max()
        
        split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='split_var4')
        
        if split_var4 == 'Specific Players':
            player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_hitters, key='player_var1')
        elif split_var4 == 'All':
            player_var1 = total_hitters
    
    with col2:
        working_data = hitter_gamelog_table
        if split_var1 == 'Season Logs':
            choose_cols = st.container()
            with choose_cols:
                choose_disp = st.multiselect('Which stats would you like to view?', options = season_hitter_data_cols, default = season_hitter_data_cols, key='col_display')
            disp_stats = basic_season_cols + choose_disp
            display = st.container()
            working_data = working_data[working_data['Date'] >= low_date]
            working_data = working_data[working_data['Date'] <= high_date]
            working_data = working_data[working_data['Team'].isin(team_var1)]
            working_data = working_data[working_data['Player'].isin(player_var1)]
            season_long_table = hitter_seasonlong_build(working_data)
            season_long_table = season_long_table.set_index('Player')
            
            season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
            season_long_table_disp = season_long_table_disp.drop(['Player', 'Date'], axis=1)
            display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)  
            st.download_button(
                    label="Export hitter seasonlogs Model",
                    data=convert_df_to_csv(season_long_table),
                    file_name='Seasonlogs_Hitter_View.csv',
                    mime='text/csv',
            )
            
        elif split_var1 == 'Team Logs':
            choose_cols = st.container()
            with choose_cols:
                choose_disp = st.multiselect('Which stats would you like to view?', options = season_hitter_data_cols, default = season_hitter_data_cols, key='col_display')
            disp_stats = basic_season_cols + choose_disp
            display = st.container()
            working_data = working_data[working_data['Date'] >= low_date]
            working_data = working_data[working_data['Date'] <= high_date]
            working_data = working_data[working_data['Team'].isin(team_var1)]
            team_table = hitter_team_build(working_data)
            team_table = team_table.set_index('Team')
            
            team_table_disp = team_table.reindex(disp_stats,axis="columns")
            team_table_disp = team_table_disp.drop(['Team', 'Date', 'Player'], axis=1)
            display.dataframe(team_table_disp.style.format(precision=2), height=750, use_container_width = True)  
            st.download_button(
                    label="Export hitter team logs Model",
                    data=convert_df_to_csv(team_table),
                    file_name='Seasonlogs_Hitter_View.csv',
                    mime='text/csv',
            )
            
        elif split_var1 == 'Game logs':
            choose_cols = st.container()
            with choose_cols:
                choose_disp_gamelog = st.multiselect('Which stats would you like to view?', options = hitter_data_cols, default = hitter_data_cols, key='choose_disp_gamelog')
            gamelog_disp_stats = basic_cols + choose_disp_gamelog
            working_data = working_data[working_data['Date'] >= low_date]
            working_data = working_data[working_data['Date'] <= high_date]
            working_data = working_data[working_data['Team'].isin(team_var1)]
            working_data = working_data[working_data['Player'].isin(player_var1)]
            working_data = working_data.reset_index(drop=True)
            gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
            display = st.container()
        
            bottom_menu = st.columns((4, 1, 1))
            with bottom_menu[2]:
                batch_size = st.selectbox("Page Size", options=[25, 50, 100], key='hitter_pagination')
            with bottom_menu[1]:
                total_pages = (
                    int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
                )
                current_page = st.number_input(
                    "Page", min_value=1, max_value=total_pages, step=1
                )
            with bottom_menu[0]:
                st.markdown(f"Page **{current_page}** of **{total_pages}** ")
            
            
            pages = split_frame(gamelog_data, batch_size)
            # pages = pages.set_index('Player')
            if len(player_var1) > 0:
                display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
                st.download_button(
                        label="Export hitter gamelogs model",
                        data=convert_df_to_csv(gamelog_data),
                        file_name='Gamelogs_Hitter_View.csv',
                        mime='text/csv',
                )

with tab2:
    st.info(t_stamp)
    col1, col2 = st.columns([1, 9])
    with col1:
        if st.button("Reset Data", key='reset2'):
                  st.cache_data.clear()
                  hitter_gamelog_table, pitcher_gamelog_table, timestamp = init_baselines()
                  t_stamp = f"Updated through: " + str(timestamp) + f" CST"

                  basic_cols = ['Player', 'Team', 'Date']

                  basic_season_cols = ['Player', 'Team', 'Date']

                  hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                      'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']

                  season_hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                             'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%']

                  pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                       'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
                                       'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
                                       'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN']

                  season_pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                              'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
                                              'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
                                              'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN']

                  indv_teams = hitter_gamelog_table.drop_duplicates(subset='Team')
                  total_teams = indv_teams.Team.values.tolist()
                  indv_hitters = hitter_gamelog_table.drop_duplicates(subset='Player')
                  total_hitters = indv_hitters.Player.values.tolist()
                  indv_pitchers = pitcher_gamelog_table.drop_duplicates(subset='Player')
                  total_pitchers = indv_pitchers.Player.values.tolist()
                  total_dates = hitter_gamelog_table.Date.values.tolist()
        
        sp_split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='sp_split_var1')
        sp_split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='sp_split_var2')
        
        if sp_split_var2 == 'Specific Teams':
            sp_team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='sp_team_var1')
        elif sp_split_var2 == 'All':
            sp_team_var1 = total_teams
            
        sp_split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='sp_split_var3')
        
        if sp_split_var3 == 'Specific Dates':
            sp_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='sp_low_date')
            if sp_low_date is not None:
                sp_low_date = pd.to_datetime(sp_low_date).date()
            sp_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='sp_high_date')
            if sp_high_date is not None:
                sp_high_date = pd.to_datetime(sp_high_date).date()
        elif sp_split_var3 == 'All':
            sp_low_date = pitcher_gamelog_table['Date'].min()
            sp_high_date = pitcher_gamelog_table['Date'].max()
        
        sp_split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='sp_split_var4')
        
        if sp_split_var4 == 'Specific Players':
            sp_player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_pitchers, key='sp_player_var1')
        elif sp_split_var4 == 'All':
            sp_player_var1 = total_pitchers
    
    with col2:
        working_data = pitcher_gamelog_table
        if sp_split_var1 == 'Season Logs':
            choose_cols = st.container()
            with choose_cols:
                sp_choose_disp = st.multiselect('Which stats would you like to view?', options = season_pitcher_data_cols, default = season_pitcher_data_cols, key='sp_col_display')
            disp_stats = basic_season_cols + sp_choose_disp
            display = st.container()
            working_data = working_data[working_data['Date'] >= sp_low_date]
            working_data = working_data[working_data['Date'] <= sp_high_date]
            working_data = working_data[working_data['Team'].isin(sp_team_var1)]
            working_data = working_data[working_data['Player'].isin(sp_player_var1)]
            season_long_table = pitcher_seasonlong_build(working_data)
            season_long_table = season_long_table.set_index('Player')
            
            season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
            season_long_table_disp = season_long_table_disp.drop(['Player', 'Date'], axis=1)
            display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)  
            st.download_button(
                    label="Export pitcher seasonlogs Model",
                    data=convert_df_to_csv(season_long_table),
                    file_name='Seasonlogs_Pitcher_View.csv',
                    mime='text/csv',
            )
            
        elif sp_split_var1 == 'Gamelogs':
            choose_cols = st.container()
            with choose_cols:
                sp_choose_disp_gamelog = st.multiselect('Which stats would you like to view?', options = pitcher_data_cols, default = pitcher_data_cols, key='sp_choose_disp_gamelog')
            gamelog_disp_stats = basic_cols + sp_choose_disp_gamelog
            working_data = working_data[working_data['Date'] >= sp_low_date]
            working_data = working_data[working_data['Date'] <= sp_high_date]
            working_data = working_data[working_data['Team'].isin(sp_team_var1)]
            working_data = working_data[working_data['Player'].isin(sp_player_var1)]
            working_data = working_data.reset_index(drop=True)
            gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
            display = st.container()
        
            bottom_menu = st.columns((4, 1, 1))
            with bottom_menu[2]:
                batch_size = st.selectbox("Page Size", options=[25, 50, 100], key='pitcher_pagination')
            with bottom_menu[1]:
                total_pages = (
                    int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
                )
                current_page = st.number_input(
                    "Page", min_value=1, max_value=total_pages, step=1
                )
            with bottom_menu[0]:
                st.markdown(f"Page **{current_page}** of **{total_pages}** ")
            
            
            pages = split_frame(gamelog_data, batch_size)
            # pages = pages.set_index('Player')
            display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
            st.download_button(
                    label="Export pitcher gamelogs model",
                    data=convert_df_to_csv(gamelog_data),
                    file_name='Gamelogs_Hitter_View.csv',
                    mime='text/csv',
            )

with tab3:
    st.info(t_stamp)
    st.info("Note when creating graphs with multiple stats: The LEFT y-axis will be locked to values of the first stat you choose, while the RIGHT y-axis will be locked to the values of the second or third stat you chose depending on wether you are viewing Two or Three stats. So,  to maximize the use of the graphs,  you'll want to make sure that you are using compatible stats. I.E. use percentages together like GB% and FB% or average based stats like AVG and BABIP")
    col1, col2, col3 = st.columns([1, 7, 2])
    with col1:
        if st.button("Reset Data", key='reset3'):
                  st.cache_data.clear()
                  hitter_gamelog_table, pitcher_gamelog_table, timestamp = init_baselines()
                  t_stamp = f"Updated through: " + str(timestamp) + f" CST"

                  basic_cols = ['Player', 'Team', 'Date']

                  basic_season_cols = ['Player', 'Team', 'Date']

                  hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                      'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']

                  season_hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
                                             'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%']

                  pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                       'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
                                       'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
                                       'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN']

                  season_pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
                                              'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
                                              'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
                                              'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN']

                  indv_teams = hitter_gamelog_table.drop_duplicates(subset='Team')
                  total_teams = indv_teams.Team.values.tolist()
                  indv_hitters = hitter_gamelog_table.drop_duplicates(subset='Player')
                  total_hitters = indv_hitters.Player.values.tolist()
                  indv_pitchers = pitcher_gamelog_table.drop_duplicates(subset='Player')
                  total_pitchers = indv_pitchers.Player.values.tolist()
                  total_dates = hitter_gamelog_table.Date.values.tolist()
        
        plot_type = st.radio("Are you viewing hitter or pitcher stats?", ('Pitcher', 'Hitter'), key='plot_type')
        if plot_type == "Pitcher":
            player_drop = total_pitchers
            stat_drop = pitcher_data_cols
            working_data = pitcher_gamelog_table
        elif plot_type == "Hitter":
            player_drop = total_hitters
            stat_drop = hitter_data_cols
            working_data = hitter_gamelog_table
        player_var3 = st.selectbox("Which player are you viewing?", player_drop, key='player_var3')
        plot_count = st.radio("how many stats would you like to plot?", ('One', 'Two', 'Three'), key='plot_count')

        if plot_count == "One":
            plot_var1 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var1')
        elif plot_count == "Two":
            plot_var1 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var1')
            plot_var2 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var2')
        elif plot_count == "Three":
            plot_var1 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var1')
            plot_var2 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var2')
            plot_var3 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var3')
            
        date_var_3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates', '5-day Averages', '10-day Averages'), key='date_var_3')
        
        if date_var_3 == 'Specific Dates':
            plot_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='plot_low_date')
            if plot_low_date is not None:
                plot_low_date = pd.to_datetime(plot_low_date).date()
            plot_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='plot_high_date')
            if plot_high_date is not None:
                plot_high_date = pd.to_datetime(plot_high_date).date()
        else:
            plot_low_date = pitcher_gamelog_table['Date'].min()
            plot_high_date = pitcher_gamelog_table['Date'].max()
    
    with col2:

        working_data = working_data[working_data['Date'] >= sp_low_date]
        working_data = working_data[working_data['Date'] <= sp_high_date]
        working_data = working_data[working_data['Team'].isin(sp_team_var1)]
        working_data = working_data[working_data['Player'] == player_var3]
        if date_var_3 == '5-day Averages':
            if plot_count == "One":
                working_data['Date'] = pd.to_datetime(working_data['Date'])
                working_data = working_data.set_index('Date')
                working_data = working_data[plot_var1].rolling('5D').mean()
                working_data = working_data.reset_index()
            elif plot_count == "Two":
                working_data['Date'] = pd.to_datetime(working_data['Date'])
                working_data = working_data.set_index('Date')
                working_data1 = working_data[plot_var1].rolling('5D').mean()
                working_data2 = working_data[plot_var2].rolling('5D').mean()
                join_list = [working_data1, working_data2]
                working_data = pd.concat(join_list, join='outer', axis=1)
                working_data = working_data.reset_index()
            elif plot_count == "Three":
                working_data['Date'] = pd.to_datetime(working_data['Date'])
                working_data = working_data.set_index('Date')
                working_data1 = working_data[plot_var1].rolling('5D').mean()
                working_data2 = working_data[plot_var2].rolling('5D').mean()
                working_data3 = working_data[plot_var3].rolling('5D').mean()
                join_list = [working_data1, working_data2, working_data3]
                working_data = pd.concat(join_list, join='outer', axis=1)
                working_data = working_data.reset_index()
        elif date_var_3 == '10-day Averages':
            if plot_count == "One":
                working_data['Date'] = pd.to_datetime(working_data['Date'])
                working_data = working_data.set_index('Date')
                working_data = working_data[plot_var1].rolling('10D').mean()
                working_data = working_data.reset_index()
            elif plot_count == "Two":
                working_data['Date'] = pd.to_datetime(working_data['Date'])
                working_data = working_data.set_index('Date')
                working_data1 = working_data[plot_var1].rolling('10D').mean()
                working_data2 = working_data[plot_var2].rolling('10D').mean()
                join_list = [working_data1, working_data2]
                working_data = pd.concat(join_list, join='outer', axis=1)
                working_data = working_data.reset_index()
            elif plot_count == "Three":
                working_data['Date'] = pd.to_datetime(working_data['Date'])
                working_data = working_data.set_index('Date')
                working_data1 = working_data[plot_var1].rolling('10D').mean()
                working_data2 = working_data[plot_var2].rolling('10D').mean()
                working_data3 = working_data[plot_var3].rolling('10D').mean()
                join_list = [working_data1, working_data2, working_data3]
                working_data = pd.concat(join_list, join='outer', axis=1)
                working_data = working_data.reset_index()
        else:
            working_data = working_data
        
        if plot_count == "One":
            graph_data = working_data.reindex(['Date', plot_var1],axis="columns")
            disp_data = working_data
            fig, ax1 = plt.subplots(figsize=(20, 10), layout='tight')
 
            color = 'tab:blue'
            ax1.set_xlabel('Date') 
            ax1.set_ylabel(plot_var1, color = color) 
            ax1.plot(graph_data['Date'], graph_data[plot_var1], color = color) 
            ax1.tick_params(axis ='y', labelcolor = color)
             
            buf = BytesIO()
            fig.savefig(buf, format="png")
            st.image(buf)
        elif plot_count == "Two":
            graph_data = working_data.reindex(['Date', plot_var1, plot_var2],axis="columns")
            disp_data = working_data
            fig, ax1 = plt.subplots(figsize=(20, 10), layout='tight')
 
            color = 'tab:blue'
            ax1.set_xlabel('Date') 
            ax1.set_ylabel(plot_var1, color = color) 
            ax1.plot(graph_data['Date'], graph_data[plot_var1], color = color) 
            ax1.tick_params(axis ='y', labelcolor = color) 
             
            ax2 = ax1.twinx() 
             
            color = 'tab:green'
            ax2.set_ylabel(plot_var2, color = color) 
            ax2.plot(graph_data['Date'], graph_data[plot_var2], color = color) 
            ax2.tick_params(axis ='y', labelcolor = color)
            
            fig.legend([plot_var1, plot_var2], loc="upper right")
             
            buf = BytesIO()
            fig.savefig(buf, format="png")
            st.image(buf)
        elif plot_count == "Three":
            graph_data = working_data.reindex(['Date', plot_var1, plot_var2, plot_var3],axis="columns")
            disp_data = working_data
            fig, ax1 = plt.subplots(figsize=(20, 10), layout='tight')
 
            color = 'tab:blue'
            color2 = 'tab:orange'
            ax1.set_xlabel('Date') 
            ax1.set_ylabel(str(plot_var1 + " / " + plot_var2), color = color) 
            ax1.plot(graph_data['Date'], graph_data[plot_var1], color = color) 
            ax1.plot(graph_data['Date'], graph_data[plot_var2], color = color2) 
            ax1.tick_params(axis ='y', labelcolor = color) 
             
            ax2 = ax1.twinx() 
             
            color = 'tab:green'
            ax2.set_ylabel(plot_var3, color = color) 
            ax2.plot(graph_data['Date'], graph_data[plot_var3], color = color) 
            ax2.tick_params(axis ='y', labelcolor = color)
            
            fig.legend([plot_var1, plot_var2, plot_var3], loc="upper right")
            
            buf = BytesIO()
            fig.savefig(buf, format="png")
            st.image(buf)
    with col3:
        st.table(disp_data)