Spaces:
Running
Running
File size: 57,790 Bytes
3293039 b156c62 2334a98 8e81d11 67809c5 3293039 fff3307 3293039 1cbda44 3293039 1cbda44 3293039 67809c5 3293039 fff3307 322b4b6 3293039 78b3cde 322b4b6 29c7667 322b4b6 3293039 322b4b6 fff3307 b88173d 3293039 322b4b6 78b3cde 322b4b6 29c7667 322b4b6 3293039 fff3307 322b4b6 3293039 322b4b6 3293039 322b4b6 001d4b3 322b4b6 3293039 322b4b6 3293039 1432dff 322b4b6 3293039 2720fe3 3293039 322b4b6 3293039 322b4b6 3293039 1432dff 322b4b6 3293039 2720fe3 3293039 322b4b6 3293039 322b4b6 a2dcfb8 322b4b6 a2dcfb8 322b4b6 3293039 322b4b6 c691a6a 322b4b6 3293039 cd5129e 3293039 322b4b6 02c26df 322b4b6 02c26df 322b4b6 3293039 322b4b6 c691a6a 322b4b6 3293039 2720fe3 3293039 322b4b6 3293039 322b4b6 3293039 322b4b6 3293039 322b4b6 3293039 322b4b6 3293039 322b4b6 3293039 1cb80c7 3293039 1cb80c7 3293039 322b4b6 3293039 322b4b6 3293039 2720fe3 51c92e1 2720fe3 51c92e1 2720fe3 3293039 322b4b6 3293039 a2dcfb8 3293039 f1380c5 322b4b6 3293039 322b4b6 02c26df 322b4b6 02c26df 322b4b6 3293039 322b4b6 c691a6a 322b4b6 3293039 189eaea 30cc90e 3293039 30cc90e 3293039 30cc90e 3293039 30cc90e 3293039 30cc90e 3293039 30cc90e 3293039 62071d7 30cc90e 3293039 30cc90e 322b4b6 30cc90e 62071d7 322b4b6 1cb80c7 322b4b6 1cb80c7 322b4b6 3293039 30cc90e 322b4b6 30cc90e 322b4b6 3293039 322b4b6 a2dcfb8 322b4b6 3293039 322b4b6 3293039 322b4b6 cd5129e dca2684 cd5129e 983ba74 cd5129e 983ba74 cd5129e ae05857 cd5129e f64b2aa cd5129e f64b2aa cd5129e 983ba74 f64b2aa fec0592 f64b2aa fec0592 f64b2aa 983ba74 ae05857 fec0592 0f37bf7 6577faa 0f37bf7 2334a98 ae05857 fec0592 6577faa 8400795 6577faa dca2684 fec0592 dca2684 fadece8 dca2684 0019427 dca2684 0019427 dca2684 2334a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
import time
from io import BytesIO
from pymongo.mongo_client import MongoClient
import matplotlib.pyplot as plt
import certifi
ca = certifi.where()
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
uri = "mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority"
gc_con = gspread.service_account_from_dict(credentials, scope)
return gc_con, uri
gcservice_account, uri = init_conn()
percentages_format = {'PG': '{:.2%}', 'SG': '{:.2%}', 'SF': '{:.2%}', 'PF': '{:.2%}', 'C': '{:.2%}'}
@st.cache_resource(ttl = 600)
def init_baselines():
# Create a new client and connect to the server
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
db = client['testing_db']
collection = db["MLB_Hitters_DB"]
cursor = collection.find() # Finds all documents in the collection
raw_display = pd.DataFrame(list(cursor))
hitter_gamelog_table = raw_display[['NameASCII', 'Team', 'Date', 'G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']]
hitter_gamelog_table['Date'] = pd.to_datetime(hitter_gamelog_table['Date'])
hitter_gamelog_table['Date'] = hitter_gamelog_table['Date'].dt.date
data_cols = hitter_gamelog_table.columns.drop(['NameASCII', 'Team', 'Date'])
hitter_gamelog_table[data_cols] = hitter_gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
hitter_gamelog_table = hitter_gamelog_table.set_axis(['Player', 'Team', 'Date', 'G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%'], axis=1)
collection = db["MLB_Pitchers_DB"]
cursor = collection.find() # Finds all documents in the collection
raw_display = pd.DataFrame(list(cursor))
pitcher_gamelog_table = raw_display[['NameASCII', 'Team', 'Date', 'G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA (sc)', 'vFT (sc)', 'vFC (sc)', 'vFS (sc)', 'vFO (sc)', 'vSI (sc)',
'vSL (sc)', 'vCU (sc)', 'vKC (sc)', 'vEP (sc)', 'vCH (sc)', 'vSC (sc)', 'vKN (sc)']]
pitcher_gamelog_table.replace("", np.nan, inplace=True)
pitcher_gamelog_table['Date'] = pd.to_datetime(pitcher_gamelog_table['Date'])
pitcher_gamelog_table['Date'] = pitcher_gamelog_table['Date'].dt.date
data_cols = pitcher_gamelog_table.columns.drop(['NameASCII', 'Team', 'Date'])
pitcher_gamelog_table[data_cols] = pitcher_gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
pitcher_gamelog_table = pitcher_gamelog_table.set_axis(['Player', 'Team', 'Date', 'G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN'], axis=1)
client.close()
timestamp = pitcher_gamelog_table['Date'].max()
return hitter_gamelog_table, pitcher_gamelog_table, timestamp
@st.cache_data(show_spinner=False)
def hitter_seasonlong_build(data_sample):
season_long_table = data_sample[['Player', 'Team']]
season_long_table['G'] = data_sample.groupby(['Player', 'Team'], sort=False)['G'].transform('sum').astype(int)
season_long_table['AB'] = data_sample.groupby(['Player', 'Team'], sort=False)['AB'].transform('sum').astype(int)
season_long_table['PA'] = data_sample.groupby(['Player', 'Team'], sort=False)['PA'].transform('sum').astype(int)
season_long_table['H'] = data_sample.groupby(['Player', 'Team'], sort=False)['H'].transform('sum').astype(int)
season_long_table['1B'] = data_sample.groupby(['Player', 'Team'], sort=False)['1B'].transform('sum').astype(int)
season_long_table['2B'] = data_sample.groupby(['Player', 'Team'], sort=False)['2B'].transform('sum').astype(int)
season_long_table['3B'] = data_sample.groupby(['Player', 'Team'], sort=False)['3B'].transform('sum').astype(int)
season_long_table['HR'] = data_sample.groupby(['Player', 'Team'], sort=False)['HR'].transform('sum').astype(int)
season_long_table['R'] = data_sample.groupby(['Player', 'Team'], sort=False)['R'].transform('sum').astype(int)
season_long_table['RBI'] = data_sample.groupby(['Player', 'Team'], sort=False)['RBI'].transform('sum').astype(int)
season_long_table['BB'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB'].transform('sum').astype(int)
season_long_table['IBB'] = data_sample.groupby(['Player', 'Team'], sort=False)['IBB'].transform('sum').astype(int)
season_long_table['SO'] = data_sample.groupby(['Player', 'Team'], sort=False)['SO'].transform('sum').astype(int)
season_long_table['HBP'] = data_sample.groupby(['Player', 'Team'], sort=False)['HBP'].transform('sum').astype(int)
season_long_table['SF'] = data_sample.groupby(['Player', 'Team'], sort=False)['SF'].transform('sum').astype(int)
season_long_table['SH'] = data_sample.groupby(['Player', 'Team'], sort=False)['SH'].transform('sum').astype(int)
season_long_table['GDP'] = data_sample.groupby(['Player', 'Team'], sort=False)['GDP'].transform('sum').astype(int)
season_long_table['SB'] = data_sample.groupby(['Player', 'Team'], sort=False)['SB'].transform('sum').astype(int)
season_long_table['CS'] = data_sample.groupby(['Player', 'Team'], sort=False)['CS'].transform('sum').astype(int)
season_long_table['Avg AVG'] = data_sample.groupby(['Player', 'Team'], sort=False)['AVG'].transform('mean').astype(float)
season_long_table['Avg SLG'] = data_sample.groupby(['Player', 'Team'], sort=False)['SLG'].transform('mean').astype(float)
season_long_table['Avg wRC+'] = data_sample.groupby(['Player', 'Team'], sort=False)['wRC+'].transform('mean').astype(float)
season_long_table['Avg LD%'] = data_sample.groupby(['Player', 'Team'], sort=False)['LD%'].transform('mean').astype(float)
season_long_table['Avg GB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['GB%'].transform('mean').astype(float)
season_long_table['Avg FB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['FB%'].transform('mean').astype(float)
season_long_table['Avg Hard%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hard%'].transform('mean').astype(float)
season_long_table['Barrels'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrels'].transform('sum').astype(int)
season_long_table['Avg Barrel%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrel%'].transform('mean').astype(float)
season_long_table = season_long_table.drop_duplicates(subset='Player')
season_long_table = season_long_table.sort_values(by='Avg wRC+', ascending=False)
season_long_table = season_long_table.set_axis(['Player', 'Team', 'G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%'], axis=1)
return season_long_table
@st.cache_data(show_spinner=False)
def hitter_team_build(data_sample):
season_long_table = data_sample[['Team']]
season_long_table['G'] = data_sample.groupby(['Team'], sort=False)['G'].transform('sum').astype(int)
season_long_table['AB'] = data_sample.groupby(['Team'], sort=False)['AB'].transform('sum').astype(int)
season_long_table['PA'] = data_sample.groupby(['Team'], sort=False)['PA'].transform('sum').astype(int)
season_long_table['H'] = data_sample.groupby(['Team'], sort=False)['H'].transform('sum').astype(int)
season_long_table['1B'] = data_sample.groupby(['Team'], sort=False)['1B'].transform('sum').astype(int)
season_long_table['2B'] = data_sample.groupby(['Team'], sort=False)['2B'].transform('sum').astype(int)
season_long_table['3B'] = data_sample.groupby(['Team'], sort=False)['3B'].transform('sum').astype(int)
season_long_table['HR'] = data_sample.groupby(['Team'], sort=False)['HR'].transform('sum').astype(int)
season_long_table['R'] = data_sample.groupby(['Team'], sort=False)['R'].transform('sum').astype(int)
season_long_table['RBI'] = data_sample.groupby(['Team'], sort=False)['RBI'].transform('sum').astype(int)
season_long_table['BB'] = data_sample.groupby(['Team'], sort=False)['BB'].transform('sum').astype(int)
season_long_table['IBB'] = data_sample.groupby(['Team'], sort=False)['IBB'].transform('sum').astype(int)
season_long_table['SO'] = data_sample.groupby(['Team'], sort=False)['SO'].transform('sum').astype(int)
season_long_table['HBP'] = data_sample.groupby(['Team'], sort=False)['HBP'].transform('sum').astype(int)
season_long_table['SF'] = data_sample.groupby(['Team'], sort=False)['SF'].transform('sum').astype(int)
season_long_table['SH'] = data_sample.groupby(['Team'], sort=False)['SH'].transform('sum').astype(int)
season_long_table['GDP'] = data_sample.groupby(['Team'], sort=False)['GDP'].transform('sum').astype(int)
season_long_table['SB'] = data_sample.groupby(['Team'], sort=False)['SB'].transform('sum').astype(int)
season_long_table['CS'] = data_sample.groupby(['Team'], sort=False)['CS'].transform('sum').astype(int)
season_long_table['Avg AVG'] = data_sample.groupby(['Team'], sort=False)['AVG'].transform('mean').astype(float)
season_long_table['Avg SLG'] = data_sample.groupby(['Team'], sort=False)['SLG'].transform('mean').astype(float)
season_long_table['Avg wRC+'] = data_sample.groupby(['Team'], sort=False)['wRC+'].transform('mean').astype(float)
season_long_table['Avg LD%'] = data_sample.groupby(['Team'], sort=False)['LD%'].transform('mean').astype(float)
season_long_table['Avg GB%'] = data_sample.groupby(['Team'], sort=False)['GB%'].transform('mean').astype(float)
season_long_table['Avg FB%'] = data_sample.groupby(['Team'], sort=False)['FB%'].transform('mean').astype(float)
season_long_table['Avg Hard%'] = data_sample.groupby(['Team'], sort=False)['Hard%'].transform('mean').astype(float)
season_long_table['Barrels'] = data_sample.groupby(['Team'], sort=False)['Barrels'].transform('sum').astype(int)
season_long_table['Avg Barrel%'] = data_sample.groupby(['Team'], sort=False)['Barrel%'].transform('mean').astype(float)
season_long_table = season_long_table.drop_duplicates(subset='Team')
season_long_table = season_long_table.sort_values(by='Avg wRC+', ascending=False)
season_long_table = season_long_table.set_axis(['Team', 'G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%'], axis=1)
return season_long_table
@st.cache_data(show_spinner=False)
def pitcher_seasonlong_build(data_sample):
season_long_table = data_sample[['Player', 'Team']]
season_long_table['G'] = data_sample.groupby(['Player', 'Team'], sort=False)['G'].transform('sum').astype(int)
season_long_table['GS'] = data_sample.groupby(['Player', 'Team'], sort=False)['GS'].transform('sum').astype(int)
season_long_table['CG'] = data_sample.groupby(['Player', 'Team'], sort=False)['CG'].transform('sum').astype(int)
season_long_table['W'] = data_sample.groupby(['Player', 'Team'], sort=False)['W'].transform('sum').astype(int)
season_long_table['L'] = data_sample.groupby(['Player', 'Team'], sort=False)['L'].transform('sum').astype(int)
season_long_table['Avg ERA'] = data_sample.groupby(['Player', 'Team'], sort=False)['ERA'].transform('mean').astype(float)
season_long_table['ShO'] = data_sample.groupby(['Player', 'Team'], sort=False)['ShO'].transform('sum').astype(int)
season_long_table['SV'] = data_sample.groupby(['Player', 'Team'], sort=False)['SV'].transform('sum').astype(int)
season_long_table['HLD'] = data_sample.groupby(['Player', 'Team'], sort=False)['HLD'].transform('sum').astype(int)
season_long_table['BS'] = data_sample.groupby(['Player', 'Team'], sort=False)['BS'].transform('sum').astype(int)
season_long_table['IP'] = data_sample.groupby(['Player', 'Team'], sort=False)['IP'].transform('sum').astype(int)
season_long_table['TBF'] = data_sample.groupby(['Player', 'Team'], sort=False)['TBF'].transform('sum').astype(int)
season_long_table['H'] = data_sample.groupby(['Player', 'Team'], sort=False)['H'].transform('sum').astype(int)
season_long_table['R'] = data_sample.groupby(['Player', 'Team'], sort=False)['R'].transform('sum').astype(int)
season_long_table['ER'] = data_sample.groupby(['Player', 'Team'], sort=False)['ER'].transform('sum').astype(int)
season_long_table['HR'] = data_sample.groupby(['Player', 'Team'], sort=False)['HR'].transform('sum').astype(int)
season_long_table['BB'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB'].transform('sum').astype(int)
season_long_table['IBB'] = data_sample.groupby(['Player', 'Team'], sort=False)['IBB'].transform('sum').astype(int)
season_long_table['HBP'] = data_sample.groupby(['Player', 'Team'], sort=False)['HBP'].transform('sum').astype(int)
season_long_table['WP'] = data_sample.groupby(['Player', 'Team'], sort=False)['WP'].transform('sum').astype(int)
season_long_table['BK'] = data_sample.groupby(['Player', 'Team'], sort=False)['BK'].transform('sum').astype(int)
season_long_table['SO'] = data_sample.groupby(['Player', 'Team'], sort=False)['SO'].transform('sum').astype(int)
season_long_table['Avg K/9'] = data_sample.groupby(['Player', 'Team'], sort=False)['K/9'].transform('mean').astype(float)
season_long_table['Avg BB/9'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB/9'].transform('mean').astype(float)
season_long_table['Avg WHIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['WHIP'].transform('mean').astype(float)
season_long_table['Avg BABIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['BABIP'].transform('mean').astype(float)
season_long_table['Avg LOB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['LOB%'].transform('mean').astype(int)
season_long_table['Avg FIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['FIP'].transform('mean').astype(float)
season_long_table['Avg xFIP'] = data_sample.groupby(['Player', 'Team'], sort=False)['xFIP'].transform('mean').astype(float)
season_long_table['Avg K%'] = data_sample.groupby(['Player', 'Team'], sort=False)['K%'].transform('mean').astype(float)
season_long_table['Avg BB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['BB%'].transform('mean').astype(float)
season_long_table['Avg SIERA'] = data_sample.groupby(['Player', 'Team'], sort=False)['SIERA'].transform('mean').astype(float)
season_long_table['Avg LD%'] = data_sample.groupby(['Player', 'Team'], sort=False)['LD%'].transform('mean').astype(float)
season_long_table['Avg GB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['GB%'].transform('mean').astype(float)
season_long_table['Avg FB%'] = data_sample.groupby(['Player', 'Team'], sort=False)['FB%'].transform('mean').astype(float)
season_long_table['Avg HR/FB'] = data_sample.groupby(['Player', 'Team'], sort=False)['HR/FB'].transform('mean').astype(float)
season_long_table['Avg Hard%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hard%'].transform('mean').astype(float)
season_long_table['Barrels'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrels'].transform('sum').astype(int)
season_long_table['Avg Barrel%'] = data_sample.groupby(['Player', 'Team'], sort=False)['Barrel%'].transform('mean').astype(float)
season_long_table['Avg xERA'] = data_sample.groupby(['Player', 'Team'], sort=False)['xERA'].transform('mean').astype(float)
season_long_table['Avg vFA'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFA'].transform('mean').astype(float)
season_long_table['Avg vFT'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFT'].transform('mean').astype(float)
season_long_table['Avg vFC'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFC'].transform('mean').astype(float)
season_long_table['Avg vFS'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFS'].transform('mean').astype(float)
season_long_table['Avg vFO'] = data_sample.groupby(['Player', 'Team'], sort=False)['vFO'].transform('mean').astype(float)
season_long_table['Avg vSI'] = data_sample.groupby(['Player', 'Team'], sort=False)['vSI'].transform('mean').astype(float)
season_long_table['Avg vSL'] = data_sample.groupby(['Player', 'Team'], sort=False)['vSL'].transform('mean').astype(float)
season_long_table['Avg vCU'] = data_sample.groupby(['Player', 'Team'], sort=False)['vCU'].transform('mean').astype(float)
season_long_table['Avg vKC'] = data_sample.groupby(['Player', 'Team'], sort=False)['vKC'].transform('mean').astype(float)
season_long_table['Avg vEP'] = data_sample.groupby(['Player', 'Team'], sort=False)['vEP'].transform('mean').astype(float)
season_long_table['Avg vCH'] = data_sample.groupby(['Player', 'Team'], sort=False)['vCH'].transform('mean').astype(float)
season_long_table['Avg vSC'] = data_sample.groupby(['Player', 'Team'], sort=False)['vSC'].transform('mean').astype(float)
season_long_table['Avg vKN'] = data_sample.groupby(['Player', 'Team'], sort=False)['vKN'].transform('mean').astype(float)
season_long_table = season_long_table.drop_duplicates(subset='Player')
season_long_table = season_long_table.sort_values(by='SO', ascending=False)
season_long_table = season_long_table.set_axis(['Player', 'Team', 'G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN'], axis=1)
return season_long_table
@st.cache_data(show_spinner=False)
def pitcher_team_build(data_sample):
season_long_table = data_sample[['Team']]
season_long_table['G'] = data_sample.groupby(['Team'], sort=False)['G'].transform('sum').astype(int)
season_long_table['GS'] = data_sample.groupby(['Team'], sort=False)['GS'].transform('sum').astype(int)
season_long_table['CG'] = data_sample.groupby(['Team'], sort=False)['CG'].transform('sum').astype(int)
season_long_table['W'] = data_sample.groupby(['Team'], sort=False)['W'].transform('sum').astype(int)
season_long_table['L'] = data_sample.groupby(['Team'], sort=False)['L'].transform('sum').astype(int)
season_long_table['Avg ERA'] = data_sample.groupby(['Team'], sort=False)['ERA'].transform('mean').astype(float)
season_long_table['ShO'] = data_sample.groupby(['Team'], sort=False)['ShO'].transform('sum').astype(int)
season_long_table['SV'] = data_sample.groupby(['Team'], sort=False)['SV'].transform('sum').astype(int)
season_long_table['HLD'] = data_sample.groupby(['Team'], sort=False)['HLD'].transform('sum').astype(int)
season_long_table['BS'] = data_sample.groupby(['Team'], sort=False)['BS'].transform('sum').astype(int)
season_long_table['IP'] = data_sample.groupby(['Team'], sort=False)['IP'].transform('sum').astype(int)
season_long_table['TBF'] = data_sample.groupby(['Team'], sort=False)['TBF'].transform('sum').astype(int)
season_long_table['H'] = data_sample.groupby(['Team'], sort=False)['H'].transform('sum').astype(int)
season_long_table['R'] = data_sample.groupby(['Team'], sort=False)['R'].transform('sum').astype(int)
season_long_table['ER'] = data_sample.groupby(['Team'], sort=False)['ER'].transform('sum').astype(int)
season_long_table['HR'] = data_sample.groupby(['Team'], sort=False)['HR'].transform('sum').astype(int)
season_long_table['BB'] = data_sample.groupby(['Team'], sort=False)['BB'].transform('sum').astype(int)
season_long_table['IBB'] = data_sample.groupby(['Team'], sort=False)['IBB'].transform('sum').astype(int)
season_long_table['HBP'] = data_sample.groupby(['Team'], sort=False)['HBP'].transform('sum').astype(int)
season_long_table['WP'] = data_sample.groupby(['Team'], sort=False)['WP'].transform('sum').astype(int)
season_long_table['BK'] = data_sample.groupby(['Team'], sort=False)['BK'].transform('sum').astype(int)
season_long_table['SO'] = data_sample.groupby(['Team'], sort=False)['SO'].transform('sum').astype(int)
season_long_table['Avg K/9'] = data_sample.groupby(['Team'], sort=False)['K/9'].transform('mean').astype(float)
season_long_table['Avg BB/9'] = data_sample.groupby(['Team'], sort=False)['BB/9'].transform('mean').astype(float)
season_long_table['Avg WHIP'] = data_sample.groupby(['Team'], sort=False)['WHIP'].transform('mean').astype(float)
season_long_table['Avg BABIP'] = data_sample.groupby(['Team'], sort=False)['BABIP'].transform('mean').astype(float)
season_long_table['Avg LOB%'] = data_sample.groupby(['Team'], sort=False)['LOB%'].transform('mean').astype(int)
season_long_table['Avg FIP'] = data_sample.groupby(['Team'], sort=False)['FIP'].transform('mean').astype(float)
season_long_table['Avg xFIP'] = data_sample.groupby(['Team'], sort=False)['xFIP'].transform('mean').astype(float)
season_long_table['Avg K%'] = data_sample.groupby(['Team'], sort=False)['K%'].transform('mean').astype(float)
season_long_table['Avg BB%'] = data_sample.groupby(['Team'], sort=False)['BB%'].transform('mean').astype(float)
season_long_table['Avg SIERA'] = data_sample.groupby(['Team'], sort=False)['SIERA'].transform('mean').astype(float)
season_long_table['Avg LD%'] = data_sample.groupby(['Team'], sort=False)['LD%'].transform('mean').astype(float)
season_long_table['Avg GB%'] = data_sample.groupby(['Team'], sort=False)['GB%'].transform('mean').astype(float)
season_long_table['Avg FB%'] = data_sample.groupby(['Team'], sort=False)['FB%'].transform('mean').astype(float)
season_long_table['Avg HR/FB'] = data_sample.groupby(['Team'], sort=False)['HR/FB'].transform('mean').astype(float)
season_long_table['Avg Hard%'] = data_sample.groupby(['Team'], sort=False)['Hard%'].transform('mean').astype(float)
season_long_table['Barrels'] = data_sample.groupby(['Team'], sort=False)['Barrels'].transform('sum').astype(int)
season_long_table['Avg Barrel%'] = data_sample.groupby(['Team'], sort=False)['Barrel%'].transform('mean').astype(float)
season_long_table['Avg xERA'] = data_sample.groupby(['Team'], sort=False)['xERA'].transform('mean').astype(float)
season_long_table['Avg vFA'] = data_sample.groupby(['Team'], sort=False)['vFA'].transform('mean').astype(float)
season_long_table['Avg vFT'] = data_sample.groupby(['Team'], sort=False)['vFT'].transform('mean').astype(float)
season_long_table['Avg vFC'] = data_sample.groupby(['Team'], sort=False)['vFC'].transform('mean').astype(float)
season_long_table['Avg vFS'] = data_sample.groupby(['Team'], sort=False)['vFS'].transform('mean').astype(float)
season_long_table['Avg vFO'] = data_sample.groupby(['Team'], sort=False)['vFO'].transform('mean').astype(float)
season_long_table['Avg vSI'] = data_sample.groupby(['Team'], sort=False)['vSI'].transform('mean').astype(float)
season_long_table['Avg vSL'] = data_sample.groupby(['Team'], sort=False)['vSL'].transform('mean').astype(float)
season_long_table['Avg vCU'] = data_sample.groupby(['Team'], sort=False)['vCU'].transform('mean').astype(float)
season_long_table['Avg vKC'] = data_sample.groupby(['Team'], sort=False)['vKC'].transform('mean').astype(float)
season_long_table['Avg vEP'] = data_sample.groupby(['Team'], sort=False)['vEP'].transform('mean').astype(float)
season_long_table['Avg vCH'] = data_sample.groupby(['Team'], sort=False)['vCH'].transform('mean').astype(float)
season_long_table['Avg vSC'] = data_sample.groupby(['Team'], sort=False)['vSC'].transform('mean').astype(float)
season_long_table['Avg vKN'] = data_sample.groupby(['Team'], sort=False)['vKN'].transform('mean').astype(float)
season_long_table = season_long_table.drop_duplicates(subset='Team')
season_long_table = season_long_table.sort_values(by='SO', ascending=False)
season_long_table = season_long_table.set_axis(['Team', 'G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN'], axis=1)
return season_long_table
@st.cache_data(show_spinner=False)
def split_frame(input_df, rows):
df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)]
return df
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
hitter_gamelog_table, pitcher_gamelog_table, timestamp = init_baselines()
t_stamp = f"Updated through: " + str(timestamp) + f" CST"
basic_cols = ['Player', 'Team', 'Date']
basic_season_cols = ['Player', 'Team', 'Date']
hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']
season_hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%']
pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN']
season_pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN']
indv_teams = hitter_gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_hitters = hitter_gamelog_table.drop_duplicates(subset='Player')
total_hitters = indv_hitters.Player.values.tolist()
indv_pitchers = pitcher_gamelog_table.drop_duplicates(subset='Player')
total_pitchers = indv_pitchers.Player.values.tolist()
total_dates = hitter_gamelog_table.Date.values.tolist()
tab1, tab2, tab3 = st.tabs(['Hitter Gamelogs', 'Pitcher Gamelogs', 'Sample Graphs'])
with tab1:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
hitter_gamelog_table, pitcher_gamelog_table, timestamp = init_baselines()
t_stamp = f"Updated through: " + str(timestamp) + f" CST"
basic_cols = ['Player', 'Team', 'Date']
basic_season_cols = ['Player', 'Team', 'Date']
hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']
season_hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%']
pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN']
season_pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN']
indv_teams = hitter_gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_hitters = hitter_gamelog_table.drop_duplicates(subset='Player')
total_hitters = indv_hitters.Player.values.tolist()
indv_pitchers = pitcher_gamelog_table.drop_duplicates(subset='Player')
total_pitchers = indv_pitchers.Player.values.tolist()
total_dates = hitter_gamelog_table.Date.values.tolist()
split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Game logs', 'Team Logs'), key='split_var1')
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1')
elif split_var2 == 'All':
team_var1 = total_teams
split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3')
if split_var3 == 'Specific Dates':
low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date')
if low_date is not None:
low_date = pd.to_datetime(low_date).date()
high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date')
if high_date is not None:
high_date = pd.to_datetime(high_date).date()
elif split_var3 == 'All':
low_date = hitter_gamelog_table['Date'].min()
high_date = hitter_gamelog_table['Date'].max()
split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='split_var4')
if split_var4 == 'Specific Players':
player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_hitters, key='player_var1')
elif split_var4 == 'All':
player_var1 = total_hitters
with col2:
working_data = hitter_gamelog_table
if split_var1 == 'Season Logs':
choose_cols = st.container()
with choose_cols:
choose_disp = st.multiselect('Which stats would you like to view?', options = season_hitter_data_cols, default = season_hitter_data_cols, key='col_display')
disp_stats = basic_season_cols + choose_disp
display = st.container()
working_data = working_data[working_data['Date'] >= low_date]
working_data = working_data[working_data['Date'] <= high_date]
working_data = working_data[working_data['Team'].isin(team_var1)]
working_data = working_data[working_data['Player'].isin(player_var1)]
season_long_table = hitter_seasonlong_build(working_data)
season_long_table = season_long_table.set_index('Player')
season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
season_long_table_disp = season_long_table_disp.drop(['Player', 'Date'], axis=1)
display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)
st.download_button(
label="Export hitter seasonlogs Model",
data=convert_df_to_csv(season_long_table),
file_name='Seasonlogs_Hitter_View.csv',
mime='text/csv',
)
elif split_var1 == 'Team Logs':
choose_cols = st.container()
with choose_cols:
choose_disp = st.multiselect('Which stats would you like to view?', options = season_hitter_data_cols, default = season_hitter_data_cols, key='col_display')
disp_stats = basic_season_cols + choose_disp
display = st.container()
working_data = working_data[working_data['Date'] >= low_date]
working_data = working_data[working_data['Date'] <= high_date]
working_data = working_data[working_data['Team'].isin(team_var1)]
team_table = hitter_team_build(working_data)
team_table = team_table.set_index('Team')
team_table_disp = team_table.reindex(disp_stats,axis="columns")
team_table_disp = team_table_disp.drop(['Team', 'Date', 'Player'], axis=1)
display.dataframe(team_table_disp.style.format(precision=2), height=750, use_container_width = True)
st.download_button(
label="Export hitter team logs Model",
data=convert_df_to_csv(team_table),
file_name='Seasonlogs_Hitter_View.csv',
mime='text/csv',
)
elif split_var1 == 'Game logs':
choose_cols = st.container()
with choose_cols:
choose_disp_gamelog = st.multiselect('Which stats would you like to view?', options = hitter_data_cols, default = hitter_data_cols, key='choose_disp_gamelog')
gamelog_disp_stats = basic_cols + choose_disp_gamelog
working_data = working_data[working_data['Date'] >= low_date]
working_data = working_data[working_data['Date'] <= high_date]
working_data = working_data[working_data['Team'].isin(team_var1)]
working_data = working_data[working_data['Player'].isin(player_var1)]
working_data = working_data.reset_index(drop=True)
gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
display = st.container()
bottom_menu = st.columns((4, 1, 1))
with bottom_menu[2]:
batch_size = st.selectbox("Page Size", options=[25, 50, 100], key='hitter_pagination')
with bottom_menu[1]:
total_pages = (
int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
)
current_page = st.number_input(
"Page", min_value=1, max_value=total_pages, step=1
)
with bottom_menu[0]:
st.markdown(f"Page **{current_page}** of **{total_pages}** ")
pages = split_frame(gamelog_data, batch_size)
# pages = pages.set_index('Player')
if len(player_var1) > 0:
display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
st.download_button(
label="Export hitter gamelogs model",
data=convert_df_to_csv(gamelog_data),
file_name='Gamelogs_Hitter_View.csv',
mime='text/csv',
)
with tab2:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
hitter_gamelog_table, pitcher_gamelog_table, timestamp = init_baselines()
t_stamp = f"Updated through: " + str(timestamp) + f" CST"
basic_cols = ['Player', 'Team', 'Date']
basic_season_cols = ['Player', 'Team', 'Date']
hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']
season_hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%']
pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN']
season_pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN']
indv_teams = hitter_gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_hitters = hitter_gamelog_table.drop_duplicates(subset='Player')
total_hitters = indv_hitters.Player.values.tolist()
indv_pitchers = pitcher_gamelog_table.drop_duplicates(subset='Player')
total_pitchers = indv_pitchers.Player.values.tolist()
total_dates = hitter_gamelog_table.Date.values.tolist()
sp_split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='sp_split_var1')
sp_split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='sp_split_var2')
if sp_split_var2 == 'Specific Teams':
sp_team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='sp_team_var1')
elif sp_split_var2 == 'All':
sp_team_var1 = total_teams
sp_split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='sp_split_var3')
if sp_split_var3 == 'Specific Dates':
sp_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='sp_low_date')
if sp_low_date is not None:
sp_low_date = pd.to_datetime(sp_low_date).date()
sp_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='sp_high_date')
if sp_high_date is not None:
sp_high_date = pd.to_datetime(sp_high_date).date()
elif sp_split_var3 == 'All':
sp_low_date = pitcher_gamelog_table['Date'].min()
sp_high_date = pitcher_gamelog_table['Date'].max()
sp_split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='sp_split_var4')
if sp_split_var4 == 'Specific Players':
sp_player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_pitchers, key='sp_player_var1')
elif sp_split_var4 == 'All':
sp_player_var1 = total_pitchers
with col2:
working_data = pitcher_gamelog_table
if sp_split_var1 == 'Season Logs':
choose_cols = st.container()
with choose_cols:
sp_choose_disp = st.multiselect('Which stats would you like to view?', options = season_pitcher_data_cols, default = season_pitcher_data_cols, key='sp_col_display')
disp_stats = basic_season_cols + sp_choose_disp
display = st.container()
working_data = working_data[working_data['Date'] >= sp_low_date]
working_data = working_data[working_data['Date'] <= sp_high_date]
working_data = working_data[working_data['Team'].isin(sp_team_var1)]
working_data = working_data[working_data['Player'].isin(sp_player_var1)]
season_long_table = pitcher_seasonlong_build(working_data)
season_long_table = season_long_table.set_index('Player')
season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
season_long_table_disp = season_long_table_disp.drop(['Player', 'Date'], axis=1)
display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)
st.download_button(
label="Export pitcher seasonlogs Model",
data=convert_df_to_csv(season_long_table),
file_name='Seasonlogs_Pitcher_View.csv',
mime='text/csv',
)
elif sp_split_var1 == 'Gamelogs':
choose_cols = st.container()
with choose_cols:
sp_choose_disp_gamelog = st.multiselect('Which stats would you like to view?', options = pitcher_data_cols, default = pitcher_data_cols, key='sp_choose_disp_gamelog')
gamelog_disp_stats = basic_cols + sp_choose_disp_gamelog
working_data = working_data[working_data['Date'] >= sp_low_date]
working_data = working_data[working_data['Date'] <= sp_high_date]
working_data = working_data[working_data['Team'].isin(sp_team_var1)]
working_data = working_data[working_data['Player'].isin(sp_player_var1)]
working_data = working_data.reset_index(drop=True)
gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
display = st.container()
bottom_menu = st.columns((4, 1, 1))
with bottom_menu[2]:
batch_size = st.selectbox("Page Size", options=[25, 50, 100], key='pitcher_pagination')
with bottom_menu[1]:
total_pages = (
int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
)
current_page = st.number_input(
"Page", min_value=1, max_value=total_pages, step=1
)
with bottom_menu[0]:
st.markdown(f"Page **{current_page}** of **{total_pages}** ")
pages = split_frame(gamelog_data, batch_size)
# pages = pages.set_index('Player')
display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
st.download_button(
label="Export pitcher gamelogs model",
data=convert_df_to_csv(gamelog_data),
file_name='Gamelogs_Hitter_View.csv',
mime='text/csv',
)
with tab3:
st.info(t_stamp)
st.info("Note when creating graphs with multiple stats: The LEFT y-axis will be locked to values of the first stat you choose, while the RIGHT y-axis will be locked to the values of the second or third stat you chose depending on wether you are viewing Two or Three stats. So, to maximize the use of the graphs, you'll want to make sure that you are using compatible stats. I.E. use percentages together like GB% and FB% or average based stats like AVG and BABIP")
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
hitter_gamelog_table, pitcher_gamelog_table, timestamp = init_baselines()
t_stamp = f"Updated through: " + str(timestamp) + f" CST"
basic_cols = ['Player', 'Team', 'Date']
basic_season_cols = ['Player', 'Team', 'Date']
hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'AVG', 'SLG', 'wRC+', 'LD%', 'GB%', 'FB%', 'Hard%', 'Barrels', 'Barrel%']
season_hitter_data_cols = ['G', 'AB', 'PA', 'H', '1B', '2B', '3B', 'HR', 'R', 'RBI', 'BB', 'IBB', 'SO', 'HBP', 'SF', 'SH',
'GDP', 'SB', 'CS', 'Avg AVG', 'Avg SLG', 'Avg wRC+', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg Hard%', 'Barrels', 'Avg Barrel%']
pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'K/9', 'BB/9', 'WHIP', 'BABIP', 'LOB%', 'FIP', 'xFIP', 'K%', 'BB%', 'SIERA', 'LD%', 'GB%',
'FB%', 'HR/FB', 'Hard%', 'Barrels', 'Barrel%', 'xERA', 'vFA', 'vFT', 'vFC', 'vFS', 'vFO', 'vSI',
'vSL', 'vCU', 'vKC', 'vEP', 'vCH', 'vSC', 'vKN']
season_pitcher_data_cols = ['G', 'GS', 'CG', 'W', 'L', 'Avg ERA', 'ShO', 'SV', 'HLD', 'BS', 'IP', 'TBF', 'H', 'R', 'ER', 'HR',
'BB', 'IBB', 'HBP', 'WP', 'BK', 'SO', 'Avg K/9', 'Avg BB/9', 'Avg WHIP', 'Avg BABIP', 'Avg LOB%', 'Avg FIP', 'Avg xFIP', 'Avg K%',
'Avg BB%', 'Avg SIERA', 'Avg LD%', 'Avg GB%', 'Avg FB%', 'Avg HR/FB', 'Avg Hard%', 'Barrels', 'Avg Barrel%', 'Avg xERA', 'Avg vFA',
'Avg vFT', 'Avg vFC', 'Avg vFS', 'Avg vFO', 'Avg vSI', 'Avg vSL', 'Avg vCU', 'Avg vKC', 'Avg vEP', 'Avg vCH', 'Avg vSC', 'Avg vKN']
indv_teams = hitter_gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_hitters = hitter_gamelog_table.drop_duplicates(subset='Player')
total_hitters = indv_hitters.Player.values.tolist()
indv_pitchers = pitcher_gamelog_table.drop_duplicates(subset='Player')
total_pitchers = indv_pitchers.Player.values.tolist()
total_dates = hitter_gamelog_table.Date.values.tolist()
plot_type = st.radio("Are you viewing hitter or pitcher stats?", ('Pitcher', 'Hitter'), key='plot_type')
if plot_type == "Pitcher":
player_drop = total_pitchers
stat_drop = pitcher_data_cols
working_data = pitcher_gamelog_table
elif plot_type == "Hitter":
player_drop = total_hitters
stat_drop = hitter_data_cols
working_data = hitter_gamelog_table
player_var3 = st.selectbox("Which player are you viewing?", player_drop, key='player_var3')
plot_count = st.radio("how many stats would you like to plot?", ('One', 'Two', 'Three'), key='plot_count')
if plot_count == "One":
plot_var1 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var1')
elif plot_count == "Two":
plot_var1 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var1')
plot_var2 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var2')
elif plot_count == "Three":
plot_var1 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var1')
plot_var2 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var2')
plot_var3 = st.selectbox("Which stat are you viewing?", stat_drop, key='plot_var3')
date_var_3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates', '5-day Averages', '10-day Averages'), key='date_var_3')
if date_var_3 == 'Specific Dates':
plot_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='plot_low_date')
if plot_low_date is not None:
plot_low_date = pd.to_datetime(plot_low_date).date()
plot_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='plot_high_date')
if plot_high_date is not None:
plot_high_date = pd.to_datetime(plot_high_date).date()
else:
plot_low_date = pitcher_gamelog_table['Date'].min()
plot_high_date = pitcher_gamelog_table['Date'].max()
with col2:
working_data = working_data[working_data['Date'] >= sp_low_date]
working_data = working_data[working_data['Date'] <= sp_high_date]
working_data = working_data[working_data['Team'].isin(sp_team_var1)]
working_data = working_data[working_data['Player'] == player_var3]
if date_var_3 == '5-day Averages':
working_data['Date'] = pd.to_datetime(working_data['Date'])
working_data = working_data.set_index('Date')
working_data = working_data[plot_var1].rolling('5D').mean()
elif date_var_3 == '10-day Averages':
working_data['Date'] = pd.to_datetime(working_data['Date'])
working_data = working_data.set_index('Date')
working_data = working_data[plot_var1].rolling('10D').mean()
else:
working_data = working_data
if plot_count == "One":
graph_data = working_data.reindex(['Date', plot_var1],axis="columns")
fig, ax1 = plt.subplots(figsize=(20, 10), layout='tight')
color = 'tab:blue'
ax1.set_xlabel('Date')
ax1.set_ylabel(plot_var1, color = color)
ax1.plot(graph_data['Date'], graph_data[plot_var1], color = color)
ax1.tick_params(axis ='y', labelcolor = color)
buf = BytesIO()
fig.savefig(buf, format="png")
st.image(buf)
elif plot_count == "Two":
graph_data = working_data.reindex(['Date', plot_var1, plot_var2],axis="columns")
fig, ax1 = plt.subplots(figsize=(20, 10), layout='tight')
color = 'tab:blue'
ax1.set_xlabel('Date')
ax1.set_ylabel(plot_var1, color = color)
ax1.plot(graph_data['Date'], graph_data[plot_var1], color = color)
ax1.tick_params(axis ='y', labelcolor = color)
ax2 = ax1.twinx()
color = 'tab:green'
ax2.set_ylabel(plot_var2, color = color)
ax2.plot(graph_data['Date'], graph_data[plot_var2], color = color)
ax2.tick_params(axis ='y', labelcolor = color)
buf = BytesIO()
fig.savefig(buf, format="png")
st.image(buf)
elif plot_count == "Three":
graph_data = working_data.reindex(['Date', plot_var1, plot_var2, plot_var3],axis="columns")
fig, ax1 = plt.subplots(figsize=(20, 10), layout='tight')
color = 'tab:blue'
color2 = 'tab:orange'
ax1.set_xlabel('Date')
ax1.set_ylabel(str(plot_var1 + " / " + plot_var2), color = color)
ax1.plot(graph_data['Date'], graph_data[plot_var1], color = color)
ax1.plot(graph_data['Date'], graph_data[plot_var2], color = color2)
ax1.tick_params(axis ='y', labelcolor = color)
ax2 = ax1.twinx()
color = 'tab:green'
ax2.set_ylabel(plot_var3, color = color)
ax2.plot(graph_data['Date'], graph_data[plot_var3], color = color)
ax2.tick_params(axis ='y', labelcolor = color)
buf = BytesIO()
fig.savefig(buf, format="png")
st.image(buf) |