File size: 9,427 Bytes
f8a3528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4843a50
 
f8a3528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4843a50
 
 
 
 
 
 
 
 
f8a3528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4843a50
 
f8a3528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
from itertools import combinations

scope = ['https://www.googleapis.com/auth/spreadsheets',
          "https://www.googleapis.com/auth/drive"]

credentials = {
  "type": "service_account",
  "project_id": "sheets-api-connect-378620",
  "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
  "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
  "client_id": "106625872877651920064",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}

gc = gspread.service_account_from_dict(credentials)

st.set_page_config(layout="wide")

wrong_acro = ['WSH', 'AZ', 'CWS']
right_acro = ['WAS', 'ARI', 'CHW']

game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
              'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}

team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
                   '5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}

dk_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'
fd_player_projections = 'https://docs.google.com/spreadsheets/d/1MdzPFqIT0MFid2IhegWf39VNR8IXUyo_Fb5dolOSt3o/edit#gid=340831852'

secondary_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'
secondary_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1lP4t8N7UhjR94MEwPn6powRyLl_cQBDUMSCs6cbL9ms/edit#gid=340831852'

all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
all_fd_player_projections = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=500994479'
final_Proj = 0

@st.cache_data
def load_time():
          sh = gc.open_by_url(all_dk_player_projections)
          worksheet = sh.worksheet('Timestamp')
          raw_stamp = worksheet.acell('a1').value
          
          t_stamp = f"Last update was at {raw_stamp}"
          
          return t_stamp

@st.cache_data
def set_slate_teams():
    sh = gc.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('Site_Info')
    raw_display = pd.DataFrame(worksheet.get_all_records())

    for checkVar in range(len(wrong_acro)):
                    raw_display['DK Main'] = raw_display['DK Main'].replace(wrong_acro, right_acro)
                    
    for checkVar in range(len(wrong_acro)):
                    raw_display['DK Secondary'] = raw_display['DK Secondary'].replace(wrong_acro, right_acro)
                    
    for checkVar in range(len(wrong_acro)):
                    raw_display['DK Overall'] = raw_display['DK Overall'].replace(wrong_acro, right_acro)
        
    for checkVar in range(len(wrong_acro)):
                    raw_display['FD Main'] = raw_display['FD Main'].replace(wrong_acro, right_acro)
                    
    for checkVar in range(len(wrong_acro)):
                    raw_display['FD Secondary'] = raw_display['FD Secondary'].replace(wrong_acro, right_acro)
                    
    for checkVar in range(len(wrong_acro)):
                    raw_display['FD Overall'] = raw_display['FD Overall'].replace(wrong_acro, right_acro)

    return raw_display

@st.cache_data
def load_team_roo_table(URL):
    sh = gc.open_by_url(URL)
    worksheet = sh.worksheet('Team_ROO')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display[['teams', 'Opp SP', 'Top Score%', '0 Runs', '1 Run', '2 Runs', '3 Runs', '4 Runs', '5 Runs', '6 Runs', '7 Runs', '8 Runs', '9 Runs', '10 Runs']]
    for checkVar in range(len(wrong_acro)):
                    raw_display['teams'] = raw_display['teams'].replace(wrong_acro, right_acro)
    return raw_display

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

t_stamp = load_time()
site_slates = set_slate_teams()
with st.container():
          col1, col2, col3 = st.columns([3, 3, 3])
          with col1:
                    if st.button("Load/Reset Data", key='reset1'):
                          st.cache_data.clear()
                          t_stamp = load_time()
                          site_slates = set_slate_teams()
                    st.info(t_stamp)
          with col2:
                    site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
          with col3:
                    slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games'), key='slate_var1')
if site_var1 == 'Draftkings':
          if slate_var1 == 'Main Slate':
                          team_roo_table = load_team_roo_table(all_dk_player_projections)
                          slate_teams = site_slates['DK Main'].values.tolist()
                          team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
          elif slate_var1 == 'Secondary Slate':
                          team_roo_table = load_team_roo_table(all_dk_player_projections)
                          slate_teams = site_slates['DK Secondary'].values.tolist()
                          team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
          elif slate_var1 == 'All Games':
                          team_roo_table = load_team_roo_table(all_dk_player_projections)
                          slate_teams = site_slates['DK Overall'].values.tolist()
                          team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
elif site_var1 == 'Fanduel':
          if slate_var1 == 'Main Slate':
                          team_roo_table = load_team_roo_table(all_dk_player_projections)
                          slate_teams = site_slates['FD Main'].values.tolist()
                          team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
          elif slate_var1 == 'Secondary Slate':
                          team_roo_table = load_team_roo_table(all_dk_player_projections)
                          slate_teams = site_slates['FD Secondary'].values.tolist()
                          team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
          elif slate_var1 == 'All Games':
                          team_roo_table = load_team_roo_table(all_dk_player_projections)
                          slate_teams = site_slates['FD Overall'].values.tolist()
                          team_roo_table = team_roo_table[team_roo_table['teams'].isin(slate_teams)]
team_roo_table = team_roo_table.sort_values(by='Top Score%', ascending=False)
team_roo_table = team_roo_table.drop_duplicates(subset='teams')
team_roo_table.rename(columns={"teams": "Names"}, inplace = True)
team_roo_table = team_roo_table.set_index('Names')
st.dataframe(team_roo_table.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(team_roo_format,precision=2), use_container_width = True)
st.download_button(
        label="Export Tables",
        data=convert_df_to_csv(team_roo_table),
        file_name='MLB_Team_ROO_export.csv',
        mime='text/csv',
    )