Multichem's picture
Create app.py
1329302
raw
history blame
21.9 kB
import pulp
import numpy as np
import pandas as pd
import random
import sys
import openpyxl
import re
import time
import streamlit as st
import matplotlib
from matplotlib.colors import LinearSegmentedColormap
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
import json
import requests
import gspread
import plotly.figure_factory as ff
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
st.set_page_config(layout="wide")
roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
'120+%': '{:.2%}','10x%': '{:.2%}','11x%': '{:.2%}','12x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'}
stat_format = {'Win%': '{:.2%}'}
game_betting_model = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
props_overall = 'DK_NBA_Props'
player_overall = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
points_overall = 'DK_Points_Props'
assists_overall = 'DK_Assists_Props'
rebounds_overall = 'DK_Rebounds_Props'
pa_overall = 'DK_PA_Props'
pr_overall = 'DK_PR_Props'
pra_overall = 'DK_PRA_Props'
@st.cache_data
def create_player_props(URL):
sh = gc.open_by_url(URL)
worksheet = sh.get_worksheet(8)
load_display = pd.DataFrame(worksheet.get_all_records())
overall_data = load_display[['Name', 'Position', 'Team', '3P', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks']]
overall_data.rename(columns={"Name": "player"}, inplace = True)
overall_data['Points + Rebounds'] = overall_data['Points'] + overall_data['Rebounds']
overall_data['Points + Assists'] = overall_data['Points'] + overall_data['Assists']
overall_data['Points + Rebounds + Assists'] = overall_data['Points'] + overall_data['Rebounds'] + overall_data['Assists']
return overall_data
@st.cache_data
def load_game_betting(URL):
sh = gc.open_by_url(URL)
worksheet = sh.get_worksheet(1)
raw_display = pd.DataFrame(worksheet.get_all_records())
return raw_display
@st.cache_data
def load_props(URL):
sh = gc.open(URL)
worksheet = sh.get_worksheet(0)
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"player": "Player"}, inplace = True)
return raw_display
@st.cache_data
def load_player_baselines(URL):
sh = gc.open(URL)
worksheet = sh.get_worksheet(0)
raw_display = pd.DataFrame(worksheet.get_all_records())
return raw_display
@st.cache_data
def load_stat_specific(URL):
sh = gc.open(URL)
worksheet = sh.get_worksheet(0)
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"player": "Player"}, inplace = True)
raw_display = raw_display.drop(columns=['Model Probability', 'short%', 'mid%', 'long%', 's_weighted%', 'm_weighted%', 'l_weighted%', 'weighted prob%'])
return raw_display
team_frame = load_game_betting(game_betting_model)
props_frame = create_player_props(player_overall)
tab1, tab2, tab3, tab4 = st.tabs(["Game Betting Model", "Player Prop Baselines", "Stat Specific Props Projections", "Player Prop Simulations"])
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
with tab1:
if st.button("Reset Data/Load Data", key='reset1'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Projections",
data=convert_df_to_csv(team_frame),
file_name='NBA_DFS_team_frame.csv',
mime='text/csv',
key='team_frame',
)
with tab2:
if st.button("Reset Data/Load Data", key='reset2'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
team_var1 = st.multiselect('View specific team?', options = props_frame['Team'].unique(), key = 'prop_teamvar')
if team_var1:
props_frame = props_frame[props_frame['Team'].isin(team_var1)]
props_frame = props_frame.set_index('player')
st.dataframe(props_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Projections",
data=convert_df_to_csv(props_frame),
file_name='NBA_DFS_props_frame.csv',
mime='text/csv',
key='props_frame',
)
with tab3:
st.write("The Stat specific models are currently not accurate due to an API issue. Apoligies!")
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
if st.button("Reset Data/Load Data", key='reset3'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
export_container = st.empty()
with col1:
prop_type_var = st.selectbox('Select prop category', options = ['Points', 'Assists', 'Rebounds', 'Points + Assists', 'Points + Rebounds', 'Points + Rebounds + Assists'])
if st.button('Simulate Prop Category'):
with col2:
with st.spinner('Wait for it...'):
with df_hold_container.container():
if prop_type_var == "Points":
player_df = load_stat_specific(points_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'points', 'over_points_line', 'under_points_line']]
prop_df = prop_df.loc[prop_df['points'] > 0]
prop_df['Over'] = np.where(prop_df['over_points_line'] < 0, (-(prop_df['over_points_line'])/((-(prop_df['over_points_line']))+100)), 100/(prop_df['over_points_line']+100))
prop_df['Under'] = np.where(prop_df['under_points_line'] < 0, (-(prop_df['under_points_line'])/((-(prop_df['under_points_line']))+100)), 100/(prop_df['under_points_line']+100))
prop_df.rename(columns={"points": "Prop"}, inplace = True)
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
elif prop_type_var == "Assists":
player_df = load_stat_specific(assists_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'assists', 'over_assists_line', 'under_assists_line']]
prop_df = prop_df.loc[prop_df['assists'] > 0]
prop_df['Over'] = np.where(prop_df['over_assists_line'] < 0, (-(prop_df['over_assists_line'])/((-(prop_df['over_assists_line']))+100)), 100/(prop_df['over_assists_line']+100))
prop_df['Under'] = np.where(prop_df['under_assists_line'] < 0, (-(prop_df['under_assists_line'])/((-(prop_df['under_assists_line']))+100)), 100/(prop_df['under_assists_line']+100))
prop_df.rename(columns={"assists": "Prop"}, inplace = True)
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
elif prop_type_var == "Rebounds":
player_df = load_stat_specific(rebounds_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'rebounds', 'over_rebounds_line', 'under_rebounds_line']]
prop_df = prop_df.loc[prop_df['rebounds'] > 0]
prop_df['Over'] = np.where(prop_df['over_rebounds_line'] < 0, (-(prop_df['over_rebounds_line'])/((-(prop_df['over_rebounds_line']))+100)), 100/(prop_df['over_rebounds_line']+100))
prop_df['Under'] = np.where(prop_df['under_rebounds_line'] < 0, (-(prop_df['under_rebounds_line'])/((-(prop_df['under_rebounds_line']))+100)), 100/(prop_df['under_rebounds_line']+100))
prop_df.rename(columns={"rebounds": "Prop"}, inplace = True)
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
elif prop_type_var == "Points + Assists":
player_df = load_stat_specific(pa_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'points_assists', 'over_points_assists_line', 'under_points_assists_line']]
prop_df = prop_df.loc[prop_df['points_assists'] > 0]
prop_df['Over'] = np.where(prop_df['over_points_assists_line'] < 0, (-(prop_df['over_points_assists_line'])/((-(prop_df['over_points_assists_line']))+100)), 100/(prop_df['over_points_assists_line']+100))
prop_df['Under'] = np.where(prop_df['under_points_assists_line'] < 0, (-(prop_df['under_points_assists_line'])/((-(prop_df['under_points_assists_line']))+100)), 100/(prop_df['under_points_assists_line']+100))
prop_df.rename(columns={"points_assists": "Prop"}, inplace = True)
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
elif prop_type_var == "Points + Rebounds":
player_df = load_stat_specific(pr_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'points_rebounds', 'over_points_rebounds_line', 'under_points_rebounds_line']]
prop_df = prop_df.loc[prop_df['points_rebounds'] > 0]
prop_df['Over'] = np.where(prop_df['over_points_rebounds_line'] < 0, (-(prop_df['over_points_rebounds_line'])/((-(prop_df['over_points_rebounds_line']))+100)), 100/(prop_df['over_points_rebounds_line']+100))
prop_df['Under'] = np.where(prop_df['under_points_rebounds_line'] < 0, (-(prop_df['under_points_rebounds_line'])/((-(prop_df['under_points_rebounds_line']))+100)), 100/(prop_df['under_points_rebounds_line']+100))
prop_df.rename(columns={"points_rebounds": "Prop"}, inplace = True)
prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']]
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
elif prop_type_var == "Points + Rebounds + Assists":
player_df = load_stat_specific(pra_overall)
prop_df = load_props(props_overall)
prop_df = prop_df[['Player', 'points_rebounds_assists', 'over_points_rebounds_assists_line', 'under_points_rebounds_assists_line']]
prop_df = prop_df.loc[prop_df['points_rebounds_assists'] > 0]
prop_df['Over'] = np.where(prop_df['over_points_rebounds_assists_line'] < 0, (-(prop_df['over_points_rebounds_assists_line'])/((-(prop_df['over_points_rebounds_assists_line']))+100)), 100/(prop_df['over_points_rebounds_assists_line']+100))
prop_df['Under'] = np.where(prop_df['under_points_rebounds_assists_line'] < 0, (-(prop_df['under_points_rebounds_assists_line'])/((-(prop_df['under_points_rebounds_assists_line']))+100)), 100/(prop_df['under_points_rebounds_assists_line']+100))
prop_df.rename(columns={"points_rebounds_assists": "Prop"}, inplace = True)
prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']]
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df.rename(columns={"weighted%": "weighted"}, inplace = True)
prop_dict = dict(zip(df.Player, df.Prop))
over_dict = dict(zip(df.Player, df.Over))
under_dict = dict(zip(df.Player, df.Under))
weighted_dict = dict(zip(df.Player, df.weighted))
total_sims = 1000
df.replace("", 0, inplace=True)
if prop_type_var == "Points":
df['Median'] = df['Points']
elif prop_type_var == "Assists":
df['Median'] = df['Assists']
elif prop_type_var == "Rebounds":
df['Median'] = df['Rebounds']
elif prop_type_var == "Points + Assists":
df['Median'] = df['Points + Assists']
elif prop_type_var == "Points + Rebounds":
df['Median'] = df['Points + Rebounds']
elif prop_type_var == "Points + Rebounds + Assists":
df['Median'] = df['Points + Rebounds + Assists']
flex_file = df
flex_file['Floor'] = flex_file['Median'] * .20
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .20)
flex_file['STD'] = (flex_file['Median'] / 4)
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
prop_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
prop_file.astype('int').dtypes
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['Weighted_over'] = players_only['Player'].map(weighted_dict)
players_only['Weighted_under'] = 1 - players_only['Player'].map(weighted_dict)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = prop_check[prop_check >= 1].count(axis=1)/float(total_sims)
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Weighted_over", "Imp Over"]].mean(axis=1)
players_only['Under'] = prop_check[prop_check < 1].count(axis=1)/float(total_sims)
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Weighted_under", "Imp Under"]].mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = np.where(.25 - players_only['Prop_avg'] < .10, .10, .25 - players_only['Prop_avg'])
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
final_outcomes = final_outcomes.set_index('Player')
with df_hold_container:
df_hold_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with export_container:
export_container = st.empty()
st.download_button(
label="Export Projections",
data=convert_df_to_csv(final_outcomes),
file_name='NBA_DFS_prop_proj.csv',
mime='text/csv',
key='prop_proj',
)
with tab4:
st.info('Coming soon!')