Spaces:
Running
Running
import pulp | |
import numpy as np | |
import pandas as pd | |
import random | |
import sys | |
import openpyxl | |
import re | |
import time | |
import streamlit as st | |
import matplotlib | |
from matplotlib.colors import LinearSegmentedColormap | |
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode | |
import json | |
import requests | |
import gspread | |
import plotly.figure_factory as ff | |
scope = ['https://www.googleapis.com/auth/spreadsheets', | |
"https://www.googleapis.com/auth/drive"] | |
credentials = { | |
"type": "service_account", | |
"project_id": "sheets-api-connect-378620", | |
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9", | |
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n", | |
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com", | |
"client_id": "106625872877651920064", | |
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | |
"token_uri": "https://oauth2.googleapis.com/token", | |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", | |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com" | |
} | |
gc = gspread.service_account_from_dict(credentials) | |
st.set_page_config(layout="wide") | |
roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', | |
'120+%': '{:.2%}','10x%': '{:.2%}','11x%': '{:.2%}','12x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'} | |
stat_format = {'Win%': '{:.2%}'} | |
game_betting_model = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260' | |
props_overall = 'DK_NBA_Props' | |
player_overall = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260' | |
points_overall = 'DK_Points_Props' | |
assists_overall = 'DK_Assists_Props' | |
rebounds_overall = 'DK_Rebounds_Props' | |
pa_overall = 'DK_PA_Props' | |
pr_overall = 'DK_PR_Props' | |
pra_overall = 'DK_PRA_Props' | |
def create_player_props(URL): | |
sh = gc.open_by_url(URL) | |
worksheet = sh.get_worksheet(8) | |
load_display = pd.DataFrame(worksheet.get_all_records()) | |
overall_data = load_display[['Name', 'Position', 'Team', '3P', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks']] | |
overall_data.rename(columns={"Name": "player"}, inplace = True) | |
overall_data['Points + Rebounds'] = overall_data['Points'] + overall_data['Rebounds'] | |
overall_data['Points + Assists'] = overall_data['Points'] + overall_data['Assists'] | |
overall_data['Points + Rebounds + Assists'] = overall_data['Points'] + overall_data['Rebounds'] + overall_data['Assists'] | |
return overall_data | |
def load_game_betting(URL): | |
sh = gc.open_by_url(URL) | |
worksheet = sh.get_worksheet(1) | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
return raw_display | |
def load_props(URL): | |
sh = gc.open(URL) | |
worksheet = sh.get_worksheet(0) | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display.rename(columns={"player": "Player"}, inplace = True) | |
return raw_display | |
def load_player_baselines(URL): | |
sh = gc.open(URL) | |
worksheet = sh.get_worksheet(0) | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
return raw_display | |
def load_stat_specific(URL): | |
sh = gc.open(URL) | |
worksheet = sh.get_worksheet(0) | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display.rename(columns={"player": "Player"}, inplace = True) | |
raw_display = raw_display.drop(columns=['Model Probability', 'short%', 'mid%', 'long%', 's_weighted%', 'm_weighted%', 'l_weighted%', 'weighted prob%']) | |
return raw_display | |
team_frame = load_game_betting(game_betting_model) | |
props_frame = create_player_props(player_overall) | |
tab1, tab2, tab3, tab4 = st.tabs(["Game Betting Model", "Player Prop Baselines", "Stat Specific Props Projections", "Player Prop Simulations"]) | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
with tab1: | |
if st.button("Reset Data/Load Data", key='reset1'): | |
# Clear values from *all* all in-memory and on-disk data caches: | |
# i.e. clear values from both square and cube | |
st.cache_data.clear() | |
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Projections", | |
data=convert_df_to_csv(team_frame), | |
file_name='NBA_DFS_team_frame.csv', | |
mime='text/csv', | |
key='team_frame', | |
) | |
with tab2: | |
if st.button("Reset Data/Load Data", key='reset2'): | |
# Clear values from *all* all in-memory and on-disk data caches: | |
# i.e. clear values from both square and cube | |
st.cache_data.clear() | |
team_var1 = st.multiselect('View specific team?', options = props_frame['Team'].unique(), key = 'prop_teamvar') | |
if team_var1: | |
props_frame = props_frame[props_frame['Team'].isin(team_var1)] | |
props_frame = props_frame.set_index('player') | |
st.dataframe(props_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Projections", | |
data=convert_df_to_csv(props_frame), | |
file_name='NBA_DFS_props_frame.csv', | |
mime='text/csv', | |
key='props_frame', | |
) | |
with tab3: | |
st.write("The Stat specific models are currently not accurate due to an API issue. Apoligies!") | |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.') | |
if st.button("Reset Data/Load Data", key='reset3'): | |
# Clear values from *all* all in-memory and on-disk data caches: | |
# i.e. clear values from both square and cube | |
st.cache_data.clear() | |
col1, col2 = st.columns([1, 5]) | |
with col2: | |
df_hold_container = st.empty() | |
info_hold_container = st.empty() | |
plot_hold_container = st.empty() | |
export_container = st.empty() | |
with col1: | |
prop_type_var = st.selectbox('Select prop category', options = ['Points', 'Assists', 'Rebounds', 'Points + Assists', 'Points + Rebounds', 'Points + Rebounds + Assists']) | |
if st.button('Simulate Prop Category'): | |
with col2: | |
with st.spinner('Wait for it...'): | |
with df_hold_container.container(): | |
if prop_type_var == "Points": | |
player_df = load_stat_specific(points_overall) | |
prop_df = load_props(props_overall) | |
prop_df = prop_df[['Player', 'points', 'over_points_line', 'under_points_line']] | |
prop_df = prop_df.loc[prop_df['points'] > 0] | |
prop_df['Over'] = np.where(prop_df['over_points_line'] < 0, (-(prop_df['over_points_line'])/((-(prop_df['over_points_line']))+100)), 100/(prop_df['over_points_line']+100)) | |
prop_df['Under'] = np.where(prop_df['under_points_line'] < 0, (-(prop_df['under_points_line'])/((-(prop_df['under_points_line']))+100)), 100/(prop_df['under_points_line']+100)) | |
prop_df.rename(columns={"points": "Prop"}, inplace = True) | |
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player']) | |
df.rename(columns={"weighted%": "weighted"}, inplace = True) | |
elif prop_type_var == "Assists": | |
player_df = load_stat_specific(assists_overall) | |
prop_df = load_props(props_overall) | |
prop_df = prop_df[['Player', 'assists', 'over_assists_line', 'under_assists_line']] | |
prop_df = prop_df.loc[prop_df['assists'] > 0] | |
prop_df['Over'] = np.where(prop_df['over_assists_line'] < 0, (-(prop_df['over_assists_line'])/((-(prop_df['over_assists_line']))+100)), 100/(prop_df['over_assists_line']+100)) | |
prop_df['Under'] = np.where(prop_df['under_assists_line'] < 0, (-(prop_df['under_assists_line'])/((-(prop_df['under_assists_line']))+100)), 100/(prop_df['under_assists_line']+100)) | |
prop_df.rename(columns={"assists": "Prop"}, inplace = True) | |
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player']) | |
df.rename(columns={"weighted%": "weighted"}, inplace = True) | |
elif prop_type_var == "Rebounds": | |
player_df = load_stat_specific(rebounds_overall) | |
prop_df = load_props(props_overall) | |
prop_df = prop_df[['Player', 'rebounds', 'over_rebounds_line', 'under_rebounds_line']] | |
prop_df = prop_df.loc[prop_df['rebounds'] > 0] | |
prop_df['Over'] = np.where(prop_df['over_rebounds_line'] < 0, (-(prop_df['over_rebounds_line'])/((-(prop_df['over_rebounds_line']))+100)), 100/(prop_df['over_rebounds_line']+100)) | |
prop_df['Under'] = np.where(prop_df['under_rebounds_line'] < 0, (-(prop_df['under_rebounds_line'])/((-(prop_df['under_rebounds_line']))+100)), 100/(prop_df['under_rebounds_line']+100)) | |
prop_df.rename(columns={"rebounds": "Prop"}, inplace = True) | |
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player']) | |
df.rename(columns={"weighted%": "weighted"}, inplace = True) | |
elif prop_type_var == "Points + Assists": | |
player_df = load_stat_specific(pa_overall) | |
prop_df = load_props(props_overall) | |
prop_df = prop_df[['Player', 'points_assists', 'over_points_assists_line', 'under_points_assists_line']] | |
prop_df = prop_df.loc[prop_df['points_assists'] > 0] | |
prop_df['Over'] = np.where(prop_df['over_points_assists_line'] < 0, (-(prop_df['over_points_assists_line'])/((-(prop_df['over_points_assists_line']))+100)), 100/(prop_df['over_points_assists_line']+100)) | |
prop_df['Under'] = np.where(prop_df['under_points_assists_line'] < 0, (-(prop_df['under_points_assists_line'])/((-(prop_df['under_points_assists_line']))+100)), 100/(prop_df['under_points_assists_line']+100)) | |
prop_df.rename(columns={"points_assists": "Prop"}, inplace = True) | |
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player']) | |
df.rename(columns={"weighted%": "weighted"}, inplace = True) | |
elif prop_type_var == "Points + Rebounds": | |
player_df = load_stat_specific(pr_overall) | |
prop_df = load_props(props_overall) | |
prop_df = prop_df[['Player', 'points_rebounds', 'over_points_rebounds_line', 'under_points_rebounds_line']] | |
prop_df = prop_df.loc[prop_df['points_rebounds'] > 0] | |
prop_df['Over'] = np.where(prop_df['over_points_rebounds_line'] < 0, (-(prop_df['over_points_rebounds_line'])/((-(prop_df['over_points_rebounds_line']))+100)), 100/(prop_df['over_points_rebounds_line']+100)) | |
prop_df['Under'] = np.where(prop_df['under_points_rebounds_line'] < 0, (-(prop_df['under_points_rebounds_line'])/((-(prop_df['under_points_rebounds_line']))+100)), 100/(prop_df['under_points_rebounds_line']+100)) | |
prop_df.rename(columns={"points_rebounds": "Prop"}, inplace = True) | |
prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']] | |
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player']) | |
df.rename(columns={"weighted%": "weighted"}, inplace = True) | |
elif prop_type_var == "Points + Rebounds + Assists": | |
player_df = load_stat_specific(pra_overall) | |
prop_df = load_props(props_overall) | |
prop_df = prop_df[['Player', 'points_rebounds_assists', 'over_points_rebounds_assists_line', 'under_points_rebounds_assists_line']] | |
prop_df = prop_df.loc[prop_df['points_rebounds_assists'] > 0] | |
prop_df['Over'] = np.where(prop_df['over_points_rebounds_assists_line'] < 0, (-(prop_df['over_points_rebounds_assists_line'])/((-(prop_df['over_points_rebounds_assists_line']))+100)), 100/(prop_df['over_points_rebounds_assists_line']+100)) | |
prop_df['Under'] = np.where(prop_df['under_points_rebounds_assists_line'] < 0, (-(prop_df['under_points_rebounds_assists_line'])/((-(prop_df['under_points_rebounds_assists_line']))+100)), 100/(prop_df['under_points_rebounds_assists_line']+100)) | |
prop_df.rename(columns={"points_rebounds_assists": "Prop"}, inplace = True) | |
prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']] | |
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player']) | |
df.rename(columns={"weighted%": "weighted"}, inplace = True) | |
prop_dict = dict(zip(df.Player, df.Prop)) | |
over_dict = dict(zip(df.Player, df.Over)) | |
under_dict = dict(zip(df.Player, df.Under)) | |
weighted_dict = dict(zip(df.Player, df.weighted)) | |
total_sims = 1000 | |
df.replace("", 0, inplace=True) | |
if prop_type_var == "Points": | |
df['Median'] = df['Points'] | |
elif prop_type_var == "Assists": | |
df['Median'] = df['Assists'] | |
elif prop_type_var == "Rebounds": | |
df['Median'] = df['Rebounds'] | |
elif prop_type_var == "Points + Assists": | |
df['Median'] = df['Points + Assists'] | |
elif prop_type_var == "Points + Rebounds": | |
df['Median'] = df['Points + Rebounds'] | |
elif prop_type_var == "Points + Rebounds + Assists": | |
df['Median'] = df['Points + Rebounds + Assists'] | |
flex_file = df | |
flex_file['Floor'] = flex_file['Median'] * .20 | |
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .20) | |
flex_file['STD'] = (flex_file['Median'] / 4) | |
flex_file['Prop'] = flex_file['Player'].map(prop_dict) | |
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']] | |
hold_file = flex_file | |
overall_file = flex_file | |
prop_file = flex_file | |
overall_players = overall_file[['Player']] | |
for x in range(0,total_sims): | |
prop_file[x] = prop_file['Prop'] | |
prop_file = prop_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) | |
prop_file.astype('int').dtypes | |
for x in range(0,total_sims): | |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD']) | |
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) | |
overall_file.astype('int').dtypes | |
players_only = hold_file[['Player']] | |
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True) | |
prop_check = (overall_file - prop_file) | |
players_only['Mean_Outcome'] = overall_file.mean(axis=1) | |
players_only['Weighted_over'] = players_only['Player'].map(weighted_dict) | |
players_only['Weighted_under'] = 1 - players_only['Player'].map(weighted_dict) | |
players_only['10%'] = overall_file.quantile(0.1, axis=1) | |
players_only['90%'] = overall_file.quantile(0.9, axis=1) | |
players_only['Over'] = prop_check[prop_check >= 1].count(axis=1)/float(total_sims) | |
players_only['Imp Over'] = players_only['Player'].map(over_dict) | |
players_only['Over%'] = players_only[["Over", "Weighted_over", "Imp Over"]].mean(axis=1) | |
players_only['Under'] = prop_check[prop_check < 1].count(axis=1)/float(total_sims) | |
players_only['Imp Under'] = players_only['Player'].map(under_dict) | |
players_only['Under%'] = players_only[["Under", "Weighted_under", "Imp Under"]].mean(axis=1) | |
players_only['Prop'] = players_only['Player'].map(prop_dict) | |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100 | |
players_only['prop_threshold'] = np.where(.25 - players_only['Prop_avg'] < .10, .10, .25 - players_only['Prop_avg']) | |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0] | |
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over'] | |
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under'] | |
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff']) | |
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under") | |
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet") | |
players_only['Edge'] = players_only['Bet_check'] | |
players_only['Player'] = hold_file[['Player']] | |
final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']] | |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False) | |
final_outcomes = final_outcomes.set_index('Player') | |
with df_hold_container: | |
df_hold_container = st.empty() | |
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
with export_container: | |
export_container = st.empty() | |
st.download_button( | |
label="Export Projections", | |
data=convert_df_to_csv(final_outcomes), | |
file_name='NBA_DFS_prop_proj.csv', | |
mime='text/csv', | |
key='prop_proj', | |
) | |
with tab4: | |
st.info('Coming soon!') |