File size: 7,025 Bytes
995f524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462f5eb
995f524
 
 
 
 
 
 
 
 
462f5eb
995f524
 
 
 
 
 
 
 
 
462f5eb
995f524
 
 
 
 
 
 
 
 
462f5eb
995f524
 
 
 
 
 
 
 
 
462f5eb
995f524
 
 
 
 
 
 
56aba80
995f524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.express as px
import random
import gc

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }

        gc_con = gspread.service_account_from_dict(credentials, scope)
      
        return gc_con

gcservice_account = init_conn()

DEM_data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'

@st.cache_resource(ttl = 600)
def init_baselines():
    sh = gcservice_account.open_by_url(DEM_data)

    worksheet = sh.worksheet('PG_DEM_Calc')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    raw_display.replace('%', '', inplace=True)
    raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
    raw_display['position'] = 'Point Guard'
    pg_dem = raw_display[raw_display['Acro'] != ""]

    worksheet = sh.worksheet('SG_DEM_Calc')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    raw_display.replace('%', '', inplace=True)
    raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
    raw_display['position'] = 'Shooting Guard'
    sg_dem = raw_display[raw_display['Acro'] != ""]
    
    worksheet = sh.worksheet('SF_DEM_Calc')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    raw_display.replace('%', '', inplace=True)
    raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
    raw_display['position'] = 'Small Forward'
    sf_dem = raw_display[raw_display['Acro'] != ""]
    
    worksheet = sh.worksheet('PF_DEM_Calc')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    raw_display.replace('%', '', inplace=True)
    raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
    raw_display['position'] = 'Power Forward'
    pf_dem = raw_display[raw_display['Acro'] != ""]
    
    worksheet = sh.worksheet('C_DEM_Calc')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    raw_display.replace('%', '', inplace=True)
    raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
    raw_display['position'] = 'Center'
    c_dem = raw_display[raw_display['Acro'] != ""]
    
    overall_dem = pd.concat([pg_dem, sg_dem, sf_dem, pf_dem, c_dem])
    overall_dem = overall_dem[['Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
                               'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'position']]
    overall_dem = overall_dem.reset_index()

    return overall_dem

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

overall_dem = init_baselines()

if st.button("Reset Data", key='reset1'):
          st.cache_data.clear()
          overall_dem = init_baselines()
# split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
# if split_var1 == 'Specific Teams':
#     team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = public_minutes['TC'].unique(), key='team_var1')
# elif split_var1 == 'All':
#     team_var1 = public_minutes.TC.values.tolist()
# public_minutes = public_minutes[public_minutes['TC'].isin(team_var1)]
# player_min_disp = public_minutes.set_index('Player')
# player_min_disp = player_min_disp.sort_values(by=['TC', 'MP (Today)'], ascending=[True, False])
st.dataframe(overall_dem.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
    label="Export Minutes Baselines",
    data=convert_df_to_csv(overall_dem),
    file_name='DEM_export.csv',
    mime='text/csv',
)