Multichem commited on
Commit
ba29b7e
·
1 Parent(s): b24cf91

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -16
app.py CHANGED
@@ -701,7 +701,7 @@ with tab2:
701
  # # Apply the calculation to the DataFrame
702
  # initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_c if row['Position'] == 'C' else factor_other), axis=1)
703
  # initial_proj['Own%'] = initial_proj['Own%'].clip(upper=85)
704
- initial_proj['Own'] = initial_proj['Own%'] * (800 / initial_proj['Own%'].sum())
705
 
706
  # Drop unnecessary columns and create the final DataFrame
707
  Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
@@ -710,23 +710,23 @@ with tab2:
710
  # Copy only the necessary columns
711
  initial_proj = raw_baselines[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
712
 
713
- # Define the calculation to be applied
714
- def calculate_own(position, own, mean_own, factor, max_own=85):
715
- return np.where((position == 'C') & (own - mean_own >= 0),
716
- own * (factor * (own - mean_own) / 100) + mean_own,
717
- own)
718
 
719
- # Set the factors based on the contest_var1
720
- factor_c, factor_other = {
721
- 'Small': (10, 5),
722
- 'Medium': (6, 3),
723
- 'Large': (3, 1.5),
724
- }[contest_var1]
725
 
726
- # Apply the calculation to the DataFrame
727
- initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_c if row['Position'] == 'C' else factor_other), axis=1)
728
- initial_proj['Own%'] = initial_proj['Own%'].clip(upper=85)
729
- initial_proj['Own'] = initial_proj['Own%'] * (800 / initial_proj['Own%'].sum())
730
 
731
  # Drop unnecessary columns and create the final DataFrame
732
  Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
 
701
  # # Apply the calculation to the DataFrame
702
  # initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_c if row['Position'] == 'C' else factor_other), axis=1)
703
  # initial_proj['Own%'] = initial_proj['Own%'].clip(upper=85)
704
+ initial_proj['Own'] = initial_proj['Own%'] * (900 / initial_proj['Own%'].sum())
705
 
706
  # Drop unnecessary columns and create the final DataFrame
707
  Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
 
710
  # Copy only the necessary columns
711
  initial_proj = raw_baselines[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
712
 
713
+ # # Define the calculation to be applied
714
+ # def calculate_own(position, own, mean_own, factor, max_own=85):
715
+ # return np.where((position == 'C') & (own - mean_own >= 0),
716
+ # own * (factor * (own - mean_own) / 100) + mean_own,
717
+ # own)
718
 
719
+ # # Set the factors based on the contest_var1
720
+ # factor_c, factor_other = {
721
+ # 'Small': (10, 5),
722
+ # 'Medium': (6, 3),
723
+ # 'Large': (3, 1.5),
724
+ # }[contest_var1]
725
 
726
+ # # Apply the calculation to the DataFrame
727
+ # initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_c if row['Position'] == 'C' else factor_other), axis=1)
728
+ # initial_proj['Own%'] = initial_proj['Own%'].clip(upper=85)
729
+ initial_proj['Own'] = initial_proj['Own%'] * (900 / initial_proj['Own%'].sum())
730
 
731
  # Drop unnecessary columns and create the final DataFrame
732
  Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]