File size: 15,008 Bytes
7bbbdb7
 
 
 
 
 
 
bda876a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bbbdb7
bda876a
7bbbdb7
 
bda876a
7bbbdb7
 
 
 
 
 
 
 
bda876a
7bbbdb7
 
 
 
 
 
 
 
bda876a
7bbbdb7
bda876a
 
 
 
 
7bbbdb7
 
 
bda876a
 
 
 
7bbbdb7
bda876a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bbbdb7
bda876a
 
 
 
7bbbdb7
 
 
 
 
bda876a
 
 
 
 
 
7bbbdb7
bda876a
 
 
 
7bbbdb7
 
bda876a
 
 
 
7bbbdb7
bda876a
7bbbdb7
bda876a
 
 
 
 
 
 
c5eab01
7bbbdb7
 
bda876a
37f7fbd
 
 
 
 
bda876a
 
37f7fbd
7bbbdb7
 
bda876a
7bbbdb7
bda876a
 
 
 
 
 
f58f428
 
bda876a
 
 
 
7bbbdb7
 
 
 
bda876a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bbbdb7
 
 
 
 
 
bda876a
 
 
 
 
7bbbdb7
 
 
 
 
bda876a
7bbbdb7
 
bda876a
 
7bbbdb7
 
bda876a
7bbbdb7
bda876a
7bbbdb7
6c37b5e
 
d191b0f
7bbbdb7
 
 
bda876a
7bbbdb7
 
 
 
bda876a
c5eab01
 
 
 
 
 
7bbbdb7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gspread

@st.cache_resource
def init_conn():
          scope = ['https://www.googleapis.com/auth/spreadsheets',
                    "https://www.googleapis.com/auth/drive"]
          
          credentials = {
            "type": "service_account",
            "project_id": "sheets-api-connect-378620",
            "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
            "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
            "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
            "client_id": "106625872877651920064",
            "auth_uri": "https://accounts.google.com/o/oauth2/auth",
            "token_uri": "https://oauth2.googleapis.com/token",
            "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
            "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
          }

          gc = gspread.service_account_from_dict(credentials)
          return gc

gcservice_account = init_conn()

all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'

@st.cache_resource(ttl = 300)
def init_stat_load():
    sh = gcservice_account.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('DK_Build_Up')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    dk_raw = raw_display.sort_values(by='Median', ascending=False)
    
    worksheet = sh.worksheet('FD_Build_Up')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    fd_raw = raw_display.sort_values(by='Median', ascending=False)

    return dk_raw, fd_raw

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

dk_raw, fd_raw = init_stat_load()
opp_dict = dict(zip(dk_raw.Team, dk_raw.Opp))
t_stamp = "Fix this later"

tab1, tab2 = st.tabs(['Uploads and Info', 'Pivot Finder'])

with tab1:
    st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'Median', 'Own'.")
    col1, col2 = st.columns([1, 5])

    with col1:
        proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
    
        if proj_file is not None:
                  try:
                            proj_dataframe = pd.read_csv(proj_file)
                  except:
                            proj_dataframe = pd.read_excel(proj_file)
    with col2:
        if proj_file is not None:  
                  st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
        
with tab2:
    col1, col2 = st.columns([1, 9])
    with col1:
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset1'):
              st.cache_data.clear()
              dk_raw, fd_raw = init_stat_load()
              opp_dict = dict(zip(dk_raw.Team, dk_raw.Opp))
              t_stamp = "Fix this later"
              for key in st.session_state.keys():
                  del st.session_state[key]
        data_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='data_var1')
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
        if site_var1 == 'Draftkings':
              if data_var1 == 'User':
                  raw_baselines = proj_dataframe
              elif data_var1 != 'User':
                  raw_baselines = dk_raw
        elif site_var1 == 'Fanduel':
              if data_var1 == 'User':
                  raw_baselines = proj_dataframe
              elif data_var1 != 'User':
                  raw_baselines = fd_raw
        player_check = st.selectbox('Select player to create comps', options = dk_raw['Player'].unique(), key='dk_player')
        Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
        Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
        pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
        if pos_var1 == 'Specific Positions':
            pos_var_list = st.multiselect('Which positions would you like to include?', options = ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_var_list')
        elif pos_var1 == 'All Positions':
            pos_var_list = ['PG', 'SG', 'SF', 'PF', 'C']
        split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
        if split_var1 == 'Specific Games':
            team_var1 = st.multiselect('Which teams would you like to include?', options = raw_baselines['Team'].unique(), key='team_var1')
        elif split_var1 == 'Full Slate Run':
            team_var1 = raw_baselines.Team.values.tolist()
        
    with col2:
        proj_container = st.empty()
        display_container = st.empty()
        display_dl_container = st.empty()
        hold_container = st.empty()
        if site_var1 == 'Draftkings':
            raw_baselines = dk_raw
        elif site_var1 == 'Fanduel':
            raw_baselines = fd_raw
        st.session_state.proj_display = raw_baselines.copy()
        if st.button('Simulate appropriate pivots'):
            with hold_container:
                
                working_roo = raw_baselines
                working_roo = working_roo[working_roo['Team'].isin(team_var1)]
                own_dict = dict(zip(working_roo.Player, working_roo.Own))
                min_dict = dict(zip(working_roo.Player, working_roo.Minutes))
                team_dict = dict(zip(working_roo.Player, working_roo.Team))
                total_sims = 1000
                
                player_var = working_roo.loc[working_roo['Player'] == player_check]
                player_var = player_var.reset_index()
                
                if pos_var1 == 'Specific Positions':
                    working_roo = working_roo[working_roo['Position'].isin(pos_var_list)]
                working_roo = working_roo[working_roo['Team'].isin(team_var1)]
                working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
                working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
  
                flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
                flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
                flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
                flex_file['STD'] = (flex_file['Median']/4)
                flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
                hold_file = flex_file
                overall_file = flex_file
                salary_file = flex_file
  
                overall_players = overall_file[['Player']]
  
                for x in range(0,total_sims):    
                    salary_file[x] = salary_file['Salary']
  
                salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                salary_file.astype('int').dtypes
  
                salary_file = salary_file.div(1000)
  
                for x in range(0,total_sims):    
                    overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
  
                overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                overall_file.astype('int').dtypes
  
                players_only = hold_file[['Player']]
                raw_lineups_file = players_only
  
                for x in range(0,total_sims):
                    maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
                    raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
                    players_only[x] = raw_lineups_file[x].rank(ascending=False)
  
                players_only=players_only.drop(['Player'], axis=1)
                players_only.astype('int').dtypes

                salary_2x_check = (overall_file - (salary_file*4))
                salary_3x_check = (overall_file - (salary_file*5))
                salary_4x_check = (overall_file - (salary_file*6))
                gpp_check = (overall_file - ((salary_file*5)+10))

                players_only['Average_Rank'] = players_only.mean(axis=1)
                players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
                players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
                players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
                players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
                players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
                players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
                players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
                players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)

                players_only['Player'] = hold_file[['Player']]

                final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
  
                final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
                final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]

                final_Proj['Own'] = final_Proj['Player'].map(own_dict)
                final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
                final_Proj['Team'] = final_Proj['Player'].map(team_dict)
                final_Proj['Own'] = final_Proj['Own'].astype('float')
                final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
                final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
                final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
                final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']

                final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%', 'Own', 'LevX', 'ValX']]
                final_Proj = final_Proj.set_index('Player')
                final_Proj = final_Proj.sort_values(by='Median', ascending=False)
                
                st.session_state.final_Proj = final_Proj
                
                hold_container = st.empty()
        
        with proj_container:
             proj_container = st.empty()
             if 'proj_display' in st.session_state:
                 st.dataframe(st.session_state.proj_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
        
        with display_container:
             display_container = st.empty()
             if 'final_Proj' in st.session_state:
                 st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
        
        with display_dl_container:
                 display_dl_container = st.empty()
                 if 'final_Proj' in st.session_state:
                     st.download_button(
                        label="Export Tables",
                        data=convert_df_to_csv(st.session_state.final_Proj),
                        file_name='Custom_NBA_export.csv',
                        mime='text/csv',
                     )