Spaces:
Running
Running
File size: 16,772 Bytes
4036c64 6ef6fac 4036c64 6ef6fac 4036c64 6ef6fac 4036c64 6ef6fac 4036c64 5b35c1a 6ef6fac 5b35c1a 6ef6fac 5b35c1a 767e1e6 25d03a1 6ef6fac 767e1e6 6ef6fac 767e1e6 6ef6fac 5b35c1a 767e1e6 25d03a1 5b35c1a 25d03a1 5b35c1a 25d03a1 e38d1b9 25d03a1 e38d1b9 25d03a1 e38d1b9 25d03a1 e38d1b9 25d03a1 5b35c1a 25d03a1 767e1e6 6ef6fac 767e1e6 6ef6fac 767e1e6 6ef6fac 2f6f34d 6ef6fac 4036c64 6ef6fac 4036c64 6ef6fac 767e1e6 6ef6fac a6d8284 7923b21 6ef6fac a35fbbd 64233cd 4036c64 2f6f34d 6ef6fac a35fbbd 6ef6fac a35fbbd 2f6f34d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
@st.cache_resource
def init_conn():
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
return gc
gspreadcon = init_conn()
dk_player_url = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
@st.cache_data
def load_overall_stats():
sh = gspreadcon.open_by_url(dk_player_url)
worksheet = sh.worksheet('DK_Build_Up')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
raw_display.replace("", 'Welp', inplace=True)
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
dk_raw = raw_display.sort_values(by='Median', ascending=False)
worksheet = sh.worksheet('FD_Build_Up')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
raw_display.replace("", 'Welp', inplace=True)
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
fd_raw = raw_display.sort_values(by='Median', ascending=False)
worksheet = sh.worksheet('Player_Level_ROO')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace("", 'Welp', inplace=True)
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
roo_raw = raw_display.sort_values(by='Median', ascending=False)
return dk_raw, fd_raw, roo_raw
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
dk_raw, fd_raw, roo_raw = load_overall_stats()
tab1, tab2, tab3 = st.tabs(['Uploads and Info', 'Range of Outcomes', 'Custom Range of Outcomes'])
with tab1:
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'Median', 'Own'.")
col1, col2 = st.columns([1, 5])
with col1:
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
if proj_file is not None:
try:
proj_dataframe = pd.read_csv(proj_file)
except:
proj_dataframe = pd.read_excel(proj_file)
with col2:
if proj_file is not None:
st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with tab2:
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
dk_raw, fd_raw, roo_raw = load_overall_stats()
for key in st.session_state.keys():
del st.session_state[key]
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
if site_var2 == 'Draftkings':
raw_baselines = roo_raw[roo_raw['Site'] == 'Draftkings']
elif site_var2 == 'Fanduel':
raw_baselines = roo_raw[roo_raw['Site'] == 'Fanduel']
split_var2 = st.radio("Are you running the full slate or crtain games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
if split_var2 == 'Specific Games':
team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
elif split_var2 == 'Full Slate Run':
team_var2 = raw_baselines.Team.values.tolist()
pos_var2 = st.selectbox('View specific position?', options = ['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')
with col2:
display_container_1 = st.empty()
display_dl_container_1 = st.empty()
display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
st.session_state.display_proj = display_proj
with display_container_1:
display_container = st.empty()
if 'display_proj' in st.session_state:
if pos_var2 == 'All':
st.session_state.display_proj = st.session_state.display_proj
elif pos_var2 != 'All':
st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
st.dataframe(st.session_state.display_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with display_dl_container_1:
display_dl_container = st.empty()
if 'display_proj' in st.session_state:
st.download_button(
label="Export Tables",
data=convert_df_to_csv(st.session_state.display_proj),
file_name='NBA_ROO_export.csv',
mime='text/csv',
)
with tab3:
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
dk_raw, fd_raw, roo_raw = load_overall_stats()
for key in st.session_state.keys():
del st.session_state[key]
slate_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='slate_var1')
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
if site_var1 == 'Draftkings':
if slate_var1 == 'User':
raw_baselines = proj_dataframe
elif slate_var1 != 'User':
raw_baselines = dk_raw
elif site_var1 == 'Fanduel':
if slate_var1 == 'User':
raw_baselines = proj_dataframe
elif slate_var1 != 'User':
raw_baselines = fd_raw
split_var1 = st.radio("Are you running the full slate or crtain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
if split_var1 == 'Specific Games':
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
elif split_var1 == 'Full Slate Run':
team_var1 = raw_baselines.Team.values.tolist()
pos_var1 = st.selectbox('View specific position?', options = ['All', 'PG', 'SG', 'SF', 'PF', 'C'])
with col2:
display_container = st.empty()
display_dl_container = st.empty()
hold_container = st.empty()
if st.button('Create Range of Outcomes for Slate'):
with hold_container:
if site_var1 == 'Draftkings':
raw_baselines = dk_raw
elif site_var1 == 'Fanduel':
raw_baselines = fd_raw
working_roo = raw_baselines
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
own_dict = dict(zip(working_roo.Player, working_roo.Own))
min_dict = dict(zip(working_roo.Player, working_roo.Minutes))
team_dict = dict(zip(working_roo.Player, working_roo.Team))
total_sims = 1000
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
flex_file.rename(columns={"Agg": "Median"}, inplace = True)
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
flex_file['STD'] = (flex_file['Median']/4)
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file.astype('int').dtypes
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
players_only.astype('int').dtypes
salary_2x_check = (overall_file - (salary_file*4))
salary_3x_check = (overall_file - (salary_file*5))
salary_4x_check = (overall_file - (salary_file*6))
gpp_check = (overall_file - ((salary_file*5)+10))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Own'] = final_Proj['Own'].astype('float')
final_Proj['LevX'] = ((final_Proj[['Top_finish', '4x%', 'Top_5_finish']].mean(axis=1))*100) - final_Proj['Own']
final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%', 'Own', 'LevX', 'ValX']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
st.session_state.final_Proj = final_Proj
hold_container = st.empty()
with display_container:
display_container = st.empty()
if 'final_Proj' in st.session_state:
if pos_var1 == 'All':
st.session_state.final_Proj = st.session_state.final_Proj
elif pos_var1 != 'All':
st.session_state.final_Proj = st.session_state.final_Proj[st.session_state.final_Proj['Position'].str.contains(pos_var1)]
st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with display_dl_container:
display_dl_container = st.empty()
if 'final_Proj' in st.session_state:
st.download_button(
label="Export Tables",
data=convert_df_to_csv(st.session_state.final_Proj),
file_name='Custom_NBA_export.csv',
mime='text/csv',
) |