James McCool commited on
Commit
6e328e4
·
1 Parent(s): 82b17d9

Enhance overall stats retrieval in app.py: implement conditional logic for NBA and WNBA leagues to customize data frame structure and column renaming, improving data handling and clarity for player statistics.

Browse files
Files changed (1) hide show
  1. app.py +24 -12
app.py CHANGED
@@ -67,9 +67,12 @@ def load_overall_stats(league: str):
67
  cursor = collection.find()
68
 
69
  raw_display = pd.DataFrame(list(cursor))
70
- raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
71
- 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
72
- raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
 
 
 
73
  raw_display = raw_display.loc[raw_display['Median'] > 0]
74
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
75
  dk_raw = raw_display.sort_values(by='Median', ascending=False)
@@ -81,9 +84,12 @@ def load_overall_stats(league: str):
81
  cursor = collection.find()
82
 
83
  raw_display = pd.DataFrame(list(cursor))
84
- raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
85
- 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
86
- raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
 
 
 
87
  raw_display = raw_display.loc[raw_display['Median'] > 0]
88
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
89
  fd_raw = raw_display.sort_values(by='Median', ascending=False)
@@ -95,9 +101,12 @@ def load_overall_stats(league: str):
95
  cursor = collection.find()
96
 
97
  raw_display = pd.DataFrame(list(cursor))
98
- raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
99
- 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
100
- raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
 
 
 
101
  raw_display = raw_display.loc[raw_display['Median'] > 0]
102
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
103
  dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
@@ -109,9 +118,12 @@ def load_overall_stats(league: str):
109
  cursor = collection.find()
110
 
111
  raw_display = pd.DataFrame(list(cursor))
112
- raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
113
- 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
114
- raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
 
 
 
115
  raw_display = raw_display.loc[raw_display['Median'] > 0]
116
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
117
  fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
 
67
  cursor = collection.find()
68
 
69
  raw_display = pd.DataFrame(list(cursor))
70
+ if league == 'NBA':
71
+ raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
72
+ 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
73
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
74
+ elif league == 'WNBA':
75
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "DK_Proj": "Median", "DK_ID": "ID", "DK_Pos": "Position", "DK_Salary": "Salary", "DK_Own": "Own"})
76
  raw_display = raw_display.loc[raw_display['Median'] > 0]
77
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
78
  dk_raw = raw_display.sort_values(by='Median', ascending=False)
 
84
  cursor = collection.find()
85
 
86
  raw_display = pd.DataFrame(list(cursor))
87
+ if league == 'NBA':
88
+ raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
89
+ 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
90
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
91
+ elif league == 'WNBA':
92
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "FD_Proj": "Median", "FD_ID": "ID", "FD_Pos": "Position", "FD_Salary": "Salary", "FD_Own": "Own"})
93
  raw_display = raw_display.loc[raw_display['Median'] > 0]
94
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
95
  fd_raw = raw_display.sort_values(by='Median', ascending=False)
 
101
  cursor = collection.find()
102
 
103
  raw_display = pd.DataFrame(list(cursor))
104
+ if league == 'NBA':
105
+ raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
106
+ 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
107
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
108
+ elif league == 'WNBA':
109
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "DK_Proj": "Median", "DK_ID": "ID", "DK_Pos": "Position", "DK_Salary": "Salary", "DK_Own": "Own"})
110
  raw_display = raw_display.loc[raw_display['Median'] > 0]
111
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
112
  dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
 
118
  cursor = collection.find()
119
 
120
  raw_display = pd.DataFrame(list(cursor))
121
+ if league == 'NBA':
122
+ raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
123
+ 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
124
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
125
+ elif league == 'WNBA':
126
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "FD_Proj": "Median", "FD_ID": "ID", "FD_Pos": "Position", "FD_Salary": "Salary", "FD_Own": "Own"})
127
  raw_display = raw_display.loc[raw_display['Median'] > 0]
128
  raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
129
  fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)