Spaces:
Running
Running
James McCool
commited on
Commit
·
6e328e4
1
Parent(s):
82b17d9
Enhance overall stats retrieval in app.py: implement conditional logic for NBA and WNBA leagues to customize data frame structure and column renaming, improving data handling and clarity for player statistics.
Browse files
app.py
CHANGED
@@ -67,9 +67,12 @@ def load_overall_stats(league: str):
|
|
67 |
cursor = collection.find()
|
68 |
|
69 |
raw_display = pd.DataFrame(list(cursor))
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
73 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
74 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
75 |
dk_raw = raw_display.sort_values(by='Median', ascending=False)
|
@@ -81,9 +84,12 @@ def load_overall_stats(league: str):
|
|
81 |
cursor = collection.find()
|
82 |
|
83 |
raw_display = pd.DataFrame(list(cursor))
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
87 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
88 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
89 |
fd_raw = raw_display.sort_values(by='Median', ascending=False)
|
@@ -95,9 +101,12 @@ def load_overall_stats(league: str):
|
|
95 |
cursor = collection.find()
|
96 |
|
97 |
raw_display = pd.DataFrame(list(cursor))
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
101 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
102 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
103 |
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
@@ -109,9 +118,12 @@ def load_overall_stats(league: str):
|
|
109 |
cursor = collection.find()
|
110 |
|
111 |
raw_display = pd.DataFrame(list(cursor))
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
115 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
116 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
117 |
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
|
|
67 |
cursor = collection.find()
|
68 |
|
69 |
raw_display = pd.DataFrame(list(cursor))
|
70 |
+
if league == 'NBA':
|
71 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
72 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
73 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
74 |
+
elif league == 'WNBA':
|
75 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "DK_Proj": "Median", "DK_ID": "ID", "DK_Pos": "Position", "DK_Salary": "Salary", "DK_Own": "Own"})
|
76 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
77 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
78 |
dk_raw = raw_display.sort_values(by='Median', ascending=False)
|
|
|
84 |
cursor = collection.find()
|
85 |
|
86 |
raw_display = pd.DataFrame(list(cursor))
|
87 |
+
if league == 'NBA':
|
88 |
+
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
89 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
90 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
91 |
+
elif league == 'WNBA':
|
92 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "FD_Proj": "Median", "FD_ID": "ID", "FD_Pos": "Position", "FD_Salary": "Salary", "FD_Own": "Own"})
|
93 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
94 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
95 |
fd_raw = raw_display.sort_values(by='Median', ascending=False)
|
|
|
101 |
cursor = collection.find()
|
102 |
|
103 |
raw_display = pd.DataFrame(list(cursor))
|
104 |
+
if league == 'NBA':
|
105 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
106 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
107 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
108 |
+
elif league == 'WNBA':
|
109 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "DK_Proj": "Median", "DK_ID": "ID", "DK_Pos": "Position", "DK_Salary": "Salary", "DK_Own": "Own"})
|
110 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
111 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
112 |
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
|
|
118 |
cursor = collection.find()
|
119 |
|
120 |
raw_display = pd.DataFrame(list(cursor))
|
121 |
+
if league == 'NBA':
|
122 |
+
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
123 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
124 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
125 |
+
elif league == 'WNBA':
|
126 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "FD_Proj": "Median", "FD_ID": "ID", "FD_Pos": "Position", "FD_Salary": "Salary", "FD_Own": "Own"})
|
127 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
128 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
129 |
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|