James McCool commited on
Commit
bf4ffa6
·
1 Parent(s): 023a185

Refactor data export logic in app.py: streamline the export process by consolidating column drop operations for Portfolio Manager exports and enhancing the mapping of player position columns. This update improves data clarity and ensures accurate filtering based on salary ranges.

Browse files
Files changed (1) hide show
  1. app.py +12 -63
app.py CHANGED
@@ -627,9 +627,11 @@ with tab2:
627
  data_export[col_idx] = data_export[col_idx].map(id_dict)
628
  elif slate_type_var1 == 'Showdown':
629
  data_export[col_idx] = data_export[col_idx].map(fd_id_dict_sd)
630
- name_export = name_export
631
- data_export = data_export
 
632
  reg_opt_col, pm_opt_col = st.columns(2)
 
633
  with reg_opt_col:
634
  st.download_button(
635
  label="Export optimals set (IDs)",
@@ -644,28 +646,6 @@ with tab2:
644
  mime='text/csv',
645
  )
646
  with pm_opt_col:
647
- if site_var2 == 'Draftkings':
648
- if slate_type_var1 == 'Regular':
649
- if league_var == 'NBA':
650
- map_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
651
- elif league_var == 'WNBA':
652
- map_columns = ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL']
653
- elif slate_type_var1 == 'Showdown':
654
- map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
655
- for col_idx in map_columns:
656
- data_export[col_idx] = data_export[col_idx].map(id_dict)
657
- elif site_var2 == 'Fanduel':
658
- if slate_type_var1 == 'Regular':
659
- if league_var == 'NBA':
660
- map_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'C2', 'UTIL']
661
- elif league_var == 'WNBA':
662
- map_columns = ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4']
663
- elif slate_type_var1 == 'Showdown':
664
- map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
665
- for col_idx in map_columns:
666
- data_export[col_idx] = data_export[col_idx].map(id_dict)
667
- pm_name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
668
- pm_data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
669
  st.download_button(
670
  label="Portfolio Manager Export (IDs)",
671
  data=convert_pm_df(pm_data_export),
@@ -690,11 +670,6 @@ with tab2:
690
  map_columns = ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL']
691
  elif slate_type_var1 == 'Showdown':
692
  map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
693
- for col_idx in map_columns:
694
- if slate_type_var1 == 'Regular':
695
- data_export[col_idx] = data_export[col_idx].map(id_dict)
696
- elif slate_type_var1 == 'Showdown':
697
- data_export[col_idx] = data_export[col_idx].map(dk_id_dict_sd)
698
  elif site_var2 == 'Fanduel':
699
  if slate_type_var1 == 'Regular':
700
  if league_var == 'NBA':
@@ -703,19 +678,19 @@ with tab2:
703
  map_columns = ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4']
704
  elif slate_type_var1 == 'Showdown':
705
  map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
706
- for col_idx in map_columns:
707
- if slate_type_var1 == 'Regular':
708
- data_export[col_idx] = data_export[col_idx].map(id_dict)
709
- elif slate_type_var1 == 'Showdown':
710
- data_export[col_idx] = data_export[col_idx].map(fd_id_dict_sd)
711
  data_export = data_export[data_export['salary'] >= salary_min_var]
712
  data_export = data_export[data_export['salary'] <= salary_max_var]
713
 
714
  name_export = name_export[name_export['salary'] >= salary_min_var]
715
  name_export = name_export[name_export['salary'] <= salary_max_var]
716
-
717
- data_export = data_export
718
- name_export = name_export
719
 
720
  reg_opt_col, pm_opt_col = st.columns(2)
721
  with reg_opt_col:
@@ -732,32 +707,6 @@ with tab2:
732
  mime='text/csv',
733
  )
734
  with pm_opt_col:
735
- if site_var2 == 'Draftkings':
736
- if slate_type_var1 == 'Regular':
737
- if league_var == 'NBA':
738
- data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
739
- elif league_var == 'WNBA':
740
- data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
741
- elif slate_type_var1 == 'Showdown':
742
- data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
743
- elif site_var2 == 'Fanduel':
744
- if slate_type_var1 == 'Regular':
745
- if league_var == 'NBA':
746
- data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
747
- elif league_var == 'WNBA':
748
- data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
749
- elif slate_type_var1 == 'Showdown':
750
- data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
751
-
752
- data_export = data_export[data_export['salary'] >= salary_min_var]
753
- data_export = data_export[data_export['salary'] <= salary_max_var]
754
-
755
- name_export = name_export[name_export['salary'] >= salary_min_var]
756
- name_export = name_export[name_export['salary'] <= salary_max_var]
757
-
758
- pm_name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
759
- pm_data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
760
-
761
  st.download_button(
762
  label="Portfolio Manager Export (IDs)",
763
  data=convert_pm_df(pm_data_export),
 
627
  data_export[col_idx] = data_export[col_idx].map(id_dict)
628
  elif slate_type_var1 == 'Showdown':
629
  data_export[col_idx] = data_export[col_idx].map(fd_id_dict_sd)
630
+
631
+ pm_name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
632
+ pm_data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
633
  reg_opt_col, pm_opt_col = st.columns(2)
634
+
635
  with reg_opt_col:
636
  st.download_button(
637
  label="Export optimals set (IDs)",
 
646
  mime='text/csv',
647
  )
648
  with pm_opt_col:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649
  st.download_button(
650
  label="Portfolio Manager Export (IDs)",
651
  data=convert_pm_df(pm_data_export),
 
670
  map_columns = ['G1', 'G2', 'F1', 'F2', 'F3', 'UTIL']
671
  elif slate_type_var1 == 'Showdown':
672
  map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
 
 
 
 
 
673
  elif site_var2 == 'Fanduel':
674
  if slate_type_var1 == 'Regular':
675
  if league_var == 'NBA':
 
678
  map_columns = ['G1', 'G2', 'G3', 'F1', 'F2', 'F3', 'F4']
679
  elif slate_type_var1 == 'Showdown':
680
  map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
681
+ for col_idx in map_columns:
682
+ if slate_type_var1 == 'Regular':
683
+ data_export[col_idx] = data_export[col_idx].map(id_dict)
684
+ elif slate_type_var1 == 'Showdown':
685
+ data_export[col_idx] = data_export[col_idx].map(fd_id_dict_sd)
686
  data_export = data_export[data_export['salary'] >= salary_min_var]
687
  data_export = data_export[data_export['salary'] <= salary_max_var]
688
 
689
  name_export = name_export[name_export['salary'] >= salary_min_var]
690
  name_export = name_export[name_export['salary'] <= salary_max_var]
691
+
692
+ pm_name_export = name_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
693
+ pm_data_export = data_export.drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
694
 
695
  reg_opt_col, pm_opt_col = st.columns(2)
696
  with reg_opt_col:
 
707
  mime='text/csv',
708
  )
709
  with pm_opt_col:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710
  st.download_button(
711
  label="Portfolio Manager Export (IDs)",
712
  data=convert_pm_df(pm_data_export),