Spaces:
Runtime error
Runtime error
File size: 55,086 Bytes
eb17727 26a6d25 eb17727 26a6d25 0c5282a 26a6d25 fe5cadb dc3ab66 eb17727 170c65a 59d6c64 e0beaab eb17727 e0beaab eb17727 5dfff3f eb17727 280c1f9 eb17727 57edccb f453e17 eb17727 280c1f9 f0feca3 fe5cadb 280c1f9 672b3ae 280c1f9 cb9d25e 280c1f9 1b2014e 280c1f9 128eaed 280c1f9 fd88138 280c1f9 cb9d25e 280c1f9 5cbe7bd 280c1f9 6b1ef5e cc95c78 672b3ae 45429ae 280c1f9 eb17727 26a6d25 672b3ae 5cbe7bd cb9d25e 41fceb2 1b37964 a9f73f8 57edccb 49c24fe 57edccb 55e756a 38e8e60 a9f73f8 26a6d25 06592a5 26a6d25 42a5ed7 26a6d25 d9ad3e8 6b1ef5e 280c1f9 fd88138 280c1f9 cb9d25e 280c1f9 279ff8e 3af6f82 1b37964 5cbe7bd 280c1f9 cb9d25e c276129 d9ad3e8 eb17727 96889df 573fb85 96889df 296a57a 96889df 280c1f9 96889df 573fb85 296a57a 573fb85 280c1f9 573fb85 c276129 eb17727 26a6d25 42a5ed7 493a59d 7f034d5 94399d8 493a59d cb9d25e 493a59d cb9d25e 932015d 29ab7c3 38e8e60 81a9d39 56ce0fe 1208fc7 eb17727 26a6d25 96889df 42a5ed7 96889df 26a6d25 493a59d 7f034d5 94399d8 493a59d cb9d25e 493a59d cb9d25e 932015d 96889df 38e8e60 81a9d39 96889df 734367c 96889df 280c1f9 96889df 280c1f9 96889df f3b8f99 45429ae 6919d54 280c1f9 c276129 96889df 20c49d7 96889df 493a59d 96889df 20c49d7 f3b8f99 20c49d7 96889df 493a59d 59fce29 96889df 493a59d 6c48772 7f034d5 20c49d7 f3b8f99 20c49d7 7f034d5 96889df 0713583 96889df 493a59d 96889df 493a59d 96889df a32c316 59fce29 493a59d 59fce29 96889df 42a5ed7 96889df 26a6d25 7f034d5 94399d8 7f034d5 cb9d25e 7f034d5 cb9d25e 932015d 96889df 38e8e60 81a9d39 96889df 777e424 280c1f9 573fb85 96889df 280c1f9 96889df 280c1f9 96889df f3b8f99 45429ae 96889df 280c1f9 96889df 20c49d7 96889df 20c49d7 f3b8f99 20c49d7 573fb85 20c49d7 280c1f9 20c49d7 a781a50 96889df 20c49d7 f3b8f99 20c49d7 573fb85 20c49d7 280c1f9 20c49d7 6b1ef5e 59fce29 5cbe7bd 42a5ed7 5cbe7bd 26a6d25 7f034d5 94399d8 7f034d5 cb9d25e 7f034d5 cb9d25e 932015d 5cbe7bd 38e8e60 81a9d39 5cbe7bd c1051d0 5cbe7bd c1051d0 b5d82d2 5cbe7bd 992e4d5 5cbe7bd 45429ae f3b8f99 5cbe7bd 7f034d5 6c48772 7f034d5 20c49d7 5cbe7bd 20c49d7 f3b8f99 ce66297 20c49d7 c1051d0 7f034d5 20c49d7 5cbe7bd 6f7d8c1 5cbe7bd 59fce29 57edccb 42a5ed7 57edccb 0714abe 57edccb 26a6d25 57edccb 94399d8 57edccb cb9d25e 57edccb cb9d25e 932015d 57edccb 38e8e60 81a9d39 57edccb 835abe4 55e756a 835abe4 57edccb 835abe4 57edccb 940db7b 0944a45 57edccb 26a6d25 3c30efd 26a6d25 c2acd71 26a6d25 cb9d25e 26a6d25 cb9d25e 932015d 26a6d25 58a1366 26a6d25 58a1366 26a6d25 093c365 acfd853 093c365 0216170 093c365 0216170 093c365 81a9d39 26a6d25 acfd853 f83f601 093c365 26a6d25 c2acd71 dc4d16b 33f8e62 a755f01 02a9379 a60bbb8 02a9379 1130418 02a9379 21bdc76 02a9379 26a6d25 1cdf899 642608b 26a6d25 932015d 26a6d25 093c365 f83f601 093c365 26a6d25 c2acd71 26a6d25 326a55d 1130418 1fb320e 1130418 326a55d 1130418 326a55d 1130418 1fb320e 1130418 26a6d25 c2acd71 932015d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import gc
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as pio
import pymongo
import certifi
ca = certifi.where()
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
uri = "mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority&appName=TestCluster"
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
db = client["testing_db"]
gc_con = gspread.service_account_from_dict(credentials, scope)
return gc_con, client, db
gcservice_account, client, db = init_conn()
NBA_Data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
percentages_format = {'PG': '{:.2%}', 'SG': '{:.2%}', 'SF': '{:.2%}', 'PF': '{:.2%}', 'C': '{:.2%}'}
@st.cache_resource(ttl = 599)
def init_baselines():
sh = gcservice_account.open_by_url(NBA_Data)
collection = db["gamelog"]
cursor = collection.find() # Finds all documents in the collection
raw_display = pd.DataFrame(list(cursor))
gamelog_table = raw_display[raw_display['PLAYER_NAME'] != ""]
gamelog_table = gamelog_table[['PLAYER_NAME', 'POS', 'GAME_ID', 'TEAM_NAME', 'OPP_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP', 'MIN', 'touches', 'PTS', 'FGM', 'FGA', 'FG_PCT', 'FG3M', 'FG3A',
'FG3_PCT', 'FTM', 'FTA', 'FT_PCT', 'reboundChancesOffensive', 'OREB', 'reboundChancesDefensive', 'DREB', 'reboundChancesTotal', 'REB',
'passes', 'secondaryAssists', 'freeThrowAssists', 'assists', 'STL', 'BLK', 'TOV', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', 'FPPM']]
gamelog_table['assists'].replace("", 0, inplace=True)
gamelog_table['reboundChancesTotal'].replace("", 0, inplace=True)
gamelog_table['passes'].replace("", 0, inplace=True)
gamelog_table['touches'].replace("", 0, inplace=True)
gamelog_table['MIN'].replace("", 0, inplace=True)
gamelog_table['Fantasy'].replace("", 0, inplace=True)
gamelog_table['FD_Fantasy'].replace("", 0, inplace=True)
gamelog_table['FPPM'].replace("", 0, inplace=True)
gamelog_table['REB'] = gamelog_table['REB'].astype(int)
gamelog_table['assists'] = gamelog_table['assists'].astype(int)
gamelog_table['reboundChancesTotal'] = gamelog_table['reboundChancesTotal'].astype(int)
gamelog_table['passes'] = gamelog_table['passes'].astype(int)
gamelog_table['touches'] = gamelog_table['touches'].astype(int)
gamelog_table['MIN'] = gamelog_table['MIN'].astype(int)
gamelog_table['Fantasy'] = gamelog_table['Fantasy'].astype(float)
gamelog_table['FD_Fantasy'] = gamelog_table['FD_Fantasy'].astype(float)
gamelog_table['FPPM'] = gamelog_table['FPPM'].astype(float)
gamelog_table['rebound%'] = gamelog_table['REB'] / gamelog_table['reboundChancesTotal']
gamelog_table['assists_per_pass'] = gamelog_table['assists'] / gamelog_table['passes']
gamelog_table['Touch_per_min'] = gamelog_table['touches'] / gamelog_table['MIN']
gamelog_table['Fantasy_per_touch'] = gamelog_table['Fantasy'] / gamelog_table['touches']
gamelog_table['FD_Fantasy_per_touch'] = gamelog_table['FD_Fantasy'] / gamelog_table['touches']
data_cols = gamelog_table.columns.drop(['PLAYER_NAME', 'POS', 'TEAM_NAME', 'OPP_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP'])
gamelog_table[data_cols] = gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
gamelog_table['team_score'] = gamelog_table.groupby(['TEAM_NAME', 'GAME_ID'], sort=False)['PTS'].transform('sum')
gamelog_table['opp_score'] = gamelog_table.groupby(['GAME_ID'], sort=False)['PTS'].transform('sum') - gamelog_table['team_score']
gamelog_table['spread'] = (gamelog_table['opp_score'] - gamelog_table['team_score']).abs()
gamelog_table['GAME_DATE'] = pd.to_datetime(gamelog_table['GAME_DATE']).dt.date
spread_dict = dict(zip(gamelog_table['GAME_ID'], gamelog_table['spread']))
gamelog_table = gamelog_table.set_axis(['Player', 'Pos', 'game_id', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', 'FPPM',
'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch', 'team_score', 'opp_score', 'spread'], axis=1)
worksheet = sh.worksheet('Rotations')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
rot_table = raw_display[raw_display['Player'] != ""]
rot_table = rot_table[['Player', 'Team', 'PG', 'SG', 'SF', 'PF', 'C', 'Given_Pos']]
data_cols = ['PG', 'SG', 'SF', 'PF', 'C']
rot_table[data_cols] = rot_table[data_cols].apply(pd.to_numeric, errors='coerce')
rot_table = rot_table[rot_table['Player'] != 0]
collection = db["rotations"]
cursor = collection.find() # Finds all documents in the collection
raw_display = pd.DataFrame(list(cursor))
game_rot = raw_display[raw_display['PLAYER_NAME'] != ""]
data_cols = game_rot.columns.drop(['PLAYER_NAME', 'POS', 'TEAM_ABBREVIATION', 'OPP_ABBREVIATION', 'TEAM_NAME', 'OPP_NAME', 'GAME_DATE',
'MATCHUP', 'WL', 'backlog_lookup', 'Task', 'game_players'])
game_rot[data_cols] = game_rot[data_cols].apply(pd.to_numeric, errors='coerce')
game_rot['spread'] = game_rot['GAME_ID'].map(spread_dict)
game_rot['GAME_DATE'] = pd.to_datetime(game_rot['GAME_DATE']).dt.date
timestamp = gamelog_table['Date'].max()
return gamelog_table, rot_table, game_rot, timestamp
@st.cache_data(show_spinner=False)
def seasonlong_build(data_sample):
season_long_table = data_sample[['Player', 'Pos', 'Team']]
season_long_table['Min'] = data_sample.groupby(['Player', 'Season'], sort=False)['Min'].transform('mean').astype(float)
season_long_table['Touches'] = data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('mean').astype(float)
season_long_table['Touch/Min'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['Min'].transform('sum').astype(int))
season_long_table['Pts'] = data_sample.groupby(['Player', 'Season'], sort=False)['Pts'].transform('mean').astype(float)
season_long_table['FGM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('mean').astype(float)
season_long_table['FGA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('mean').astype(float)
season_long_table['FG%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('sum').astype(int))
season_long_table['FG3M'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('mean').astype(float)
season_long_table['FG3A'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('mean').astype(float)
season_long_table['FG3%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('sum').astype(int))
season_long_table['FTM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('mean').astype(float)
season_long_table['FTA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('mean').astype(float)
season_long_table['FT%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('sum').astype(int))
season_long_table['OREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB Chance'].transform('mean').astype(float)
season_long_table['OREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB'].transform('mean').astype(float)
season_long_table['DREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB Chance'].transform('mean').astype(float)
season_long_table['DREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB'].transform('mean').astype(float)
season_long_table['REB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('mean').astype(float)
season_long_table['REB'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('mean').astype(float)
season_long_table['Passes'] = data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('mean').astype(float)
season_long_table['Alt Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Alt Assists'].transform('mean').astype(float)
season_long_table['FT Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['FT Assists'].transform('mean').astype(float)
season_long_table['Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('mean').astype(float)
season_long_table['Stl'] = data_sample.groupby(['Player', 'Season'], sort=False)['Stl'].transform('mean').astype(float)
season_long_table['Blk'] = data_sample.groupby(['Player', 'Season'], sort=False)['Blk'].transform('mean').astype(float)
season_long_table['Tov'] = data_sample.groupby(['Player', 'Season'], sort=False)['Tov'].transform('mean').astype(float)
season_long_table['PF'] = data_sample.groupby(['Player', 'Season'], sort=False)['PF'].transform('mean').astype(float)
season_long_table['DD'] = data_sample.groupby(['Player', 'Season'], sort=False)['DD'].transform('mean').astype(float)
season_long_table['TD'] = data_sample.groupby(['Player', 'Season'], sort=False)['TD'].transform('mean').astype(float)
season_long_table['Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('mean').astype(float)
season_long_table['FD_Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('mean').astype(float)
season_long_table['FPPM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FPPM'].transform('mean').astype(float)
season_long_table['Rebound%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('sum').astype(int))
season_long_table['Assists/Pass'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('sum').astype(int))
season_long_table['Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
season_long_table['FD Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
season_long_table = season_long_table.drop_duplicates(subset='Player')
season_long_table = season_long_table.sort_values(by='Fantasy', ascending=False)
season_long_table = season_long_table.set_axis(['Player', 'Pos', 'Team', 'Min', 'Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'], axis=1)
return season_long_table
@st.cache_data(show_spinner=False)
def run_fantasy_corr(data_sample):
cor_testing = data_sample
cor_testing = cor_testing[cor_testing['Season'] == '22024']
date_list = cor_testing['Date'].unique().tolist()
player_list = cor_testing['Player'].unique().tolist()
corr_frame = pd.DataFrame()
corr_frame['DATE'] = date_list
for player in player_list:
player_testing = cor_testing[cor_testing['Player'] == player]
fantasy_map = dict(zip(player_testing['Date'], player_testing['Fantasy']))
corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
players_fantasy = corr_frame.drop('DATE', axis=1)
corrM = players_fantasy.corr()
return corrM
@st.cache_data(show_spinner=False)
def run_min_corr(data_sample):
cor_testing = data_sample
cor_testing = cor_testing[cor_testing['Season'] == '22024']
date_list = cor_testing['Date'].unique().tolist()
player_list = cor_testing['Player'].unique().tolist()
corr_frame = pd.DataFrame()
corr_frame['DATE'] = date_list
for player in player_list:
player_testing = cor_testing[cor_testing['Player'] == player]
fantasy_map = dict(zip(player_testing['Date'], player_testing['Min']))
corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
players_fantasy = corr_frame.drop('DATE', axis=1)
corrM = players_fantasy.corr()
return corrM
@st.cache_data(show_spinner=False)
def split_frame(input_df, rows):
df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)]
return df
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
t_stamp = f"Updated through: " + str(timestamp) + f" CST"
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
tab1, tab2, tab3, tab4, tab5 = st.tabs(['Gamelogs', 'Correlation Matrix', 'Position vs. Opp', 'Positional Percentages', 'Game Rotations'])
with tab1:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='split_var1')
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1')
elif split_var2 == 'All':
team_var1 = total_teams
split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3')
if split_var3 == 'Specific Dates':
low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date')
if low_date is not None:
low_date = pd.to_datetime(low_date).date()
high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date')
if high_date is not None:
high_date = pd.to_datetime(high_date).date()
elif split_var3 == 'All':
low_date = gamelog_table['Date'].min()
high_date = gamelog_table['Date'].max()
split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='split_var4')
if split_var4 == 'Specific Players':
player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_players, key='player_var1')
elif split_var4 == 'All':
player_var1 = total_players
spread_var1 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var1')
min_var1 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var1')
with col2:
working_data = gamelog_table
if split_var1 == 'Season Logs':
choose_cols = st.container()
with choose_cols:
choose_disp = st.multiselect('Which stats would you like to view?', options = season_data_cols, default = season_data_cols, key='col_display')
disp_stats = basic_season_cols + choose_disp
display = st.container()
working_data = working_data[working_data['Date'] >= low_date]
working_data = working_data[working_data['Date'] <= high_date]
working_data = working_data[working_data['Min'] >= min_var1[0]]
working_data = working_data[working_data['Min'] <= min_var1[1]]
working_data = working_data[working_data['spread'] >= spread_var1[0]]
working_data = working_data[working_data['spread'] <= spread_var1[1]]
working_data = working_data[working_data['Team'].isin(team_var1)]
working_data = working_data[working_data['Player'].isin(player_var1)]
season_long_table = seasonlong_build(working_data)
season_long_table = season_long_table.set_index('Player')
season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)
st.download_button(
label="Export seasonlogs Model",
data=convert_df_to_csv(season_long_table),
file_name='Seasonlogs_NBA_View.csv',
mime='text/csv',
)
elif split_var1 == 'Gamelogs':
choose_cols = st.container()
with choose_cols:
choose_disp_gamelog = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='choose_disp_gamelog')
gamelog_disp_stats = basic_cols + choose_disp_gamelog
working_data = working_data[working_data['Date'] >= low_date]
working_data = working_data[working_data['Date'] <= high_date]
working_data = working_data[working_data['Min'] >= min_var1[0]]
working_data = working_data[working_data['Min'] <= min_var1[1]]
working_data = working_data[working_data['spread'] >= spread_var1[0]]
working_data = working_data[working_data['spread'] <= spread_var1[1]]
working_data = working_data[working_data['Team'].isin(team_var1)]
working_data = working_data[working_data['Player'].isin(player_var1)]
working_data = working_data.reset_index(drop=True)
gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
display = st.container()
bottom_menu = st.columns((4, 1, 1))
with bottom_menu[2]:
batch_size = st.selectbox("Page Size", options=[25, 50, 100])
with bottom_menu[1]:
total_pages = (
int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
)
current_page = st.number_input(
"Page", min_value=1, max_value=total_pages, step=1
)
with bottom_menu[0]:
st.markdown(f"Page **{current_page}** of **{total_pages}** ")
pages = split_frame(gamelog_data, batch_size)
# pages = pages.set_index('Player')
display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
st.download_button(
label="Export gamelogs Model",
data=convert_df_to_csv(gamelog_data),
file_name='Gamelogs_NBA_View.csv',
mime='text/csv',
)
with tab2:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
corr_var = st.radio("Are you correlating fantasy or minutes?", ('Fantasy', 'Minutes'), key='corr_var')
split_var1_t2 = st.radio("Would you like to view specific teams or specific players?", ('Specific Teams', 'Specific Players'), key='split_var1_t2')
if split_var1_t2 == 'Specific Teams':
corr_var1_t2 = st.multiselect('Which teams would you like to include in the correlation?', options = total_teams, key='corr_var1_t2')
elif split_var1_t2 == 'Specific Players':
corr_var1_t2 = st.multiselect('Which players would you like to include in the correlation?', options = total_players, key='corr_var1_t2')
split_var2_t2 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3_t2')
if split_var2_t2 == 'Specific Dates':
low_date_t2 = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date_t2')
if low_date_t2 is not None:
low_date_t2 = pd.to_datetime(low_date_t2).date()
high_date_t2 = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date_t2')
if high_date_t2 is not None:
high_date_t2 = pd.to_datetime(high_date_t2).date()
elif split_var2_t2 == 'All':
low_date_t2 = gamelog_table['Date'].min()
high_date_t2 = gamelog_table['Date'].max()
spread_var1_t2 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var1_t2')
min_var1_t2 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var1_t2')
with col2:
working_data = gamelog_table
if split_var1_t2 == 'Specific Teams':
display = st.container()
working_data = working_data.sort_values(by='Fantasy', ascending=False)
working_data = working_data[working_data['Date'] >= low_date_t2]
working_data = working_data[working_data['Date'] <= high_date_t2]
working_data = working_data[working_data['Min'] >= min_var1_t2[0]]
working_data = working_data[working_data['Min'] <= min_var1_t2[1]]
working_data = working_data[working_data['spread'] >= spread_var1_t2[0]]
working_data = working_data[working_data['spread'] <= spread_var1_t2[1]]
working_data = working_data[working_data['Team'].isin(corr_var1_t2)]
if corr_var == 'Fantasy':
corr_display = run_fantasy_corr(working_data)
elif corr_var == 'Minutes':
corr_display = run_min_corr(working_data)
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=1000, use_container_width = True)
elif split_var1_t2 == 'Specific Players':
display = st.container()
working_data = working_data.sort_values(by='Fantasy', ascending=False)
working_data = working_data[working_data['Date'] >= low_date_t2]
working_data = working_data[working_data['Date'] <= high_date_t2]
working_data = working_data[working_data['Min'] >= min_var1_t2[0]]
working_data = working_data[working_data['Min'] <= min_var1_t2[1]]
working_data = working_data[working_data['spread'] >= spread_var1_t2[0]]
working_data = working_data[working_data['spread'] <= spread_var1_t2[1]]
working_data = working_data[working_data['Player'].isin(corr_var1_t2)]
if corr_var == 'Fantasy':
corr_display = run_fantasy_corr(working_data)
elif corr_var == 'Minutes':
corr_display = run_min_corr(working_data)
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Correlations Model",
data=convert_df_to_csv(corr_display),
file_name='Correlations_NBA_View.csv',
mime='text/csv',
)
with tab3:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
team_var3 = st.selectbox('Which opponent would you like to view?', options = total_teams, key='team_var3')
pos_var3 = st.selectbox('Which position would you like to view?', options = ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_var3')
disp_var3 = st.radio('Which view would you like to see?', options = ['Fantasy', 'Stats'], key='disp_var3')
date_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='date_var3')
if date_var3 == 'Specific Dates':
low_date3 = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date3')
if low_date3 is not None:
low_date3 = pd.to_datetime(low_date3).date()
high_date3 = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date3')
if high_date3 is not None:
high_date3 = pd.to_datetime(high_date3).date()
elif date_var3 == 'All':
low_date3 = gamelog_table['Date'].min()
high_date3 = gamelog_table['Date'].max()
spread_var3 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var3')
min_var3 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var3')
with col2:
if disp_var3 == 'Stats':
choose_cols = st.container()
with choose_cols:
choose_disp_matchup = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='choose_disp_matchup')
matchup_disp_stats = basic_cols + choose_disp_matchup
working_data = gamelog_table
working_data = working_data[gamelog_table['Date'] >= low_date3]
working_data = working_data[gamelog_table['Date'] <= high_date3]
season_long_table = seasonlong_build(working_data)
fantasy_dict = dict(zip(season_long_table['Player'], season_long_table['Fantasy']))
fd_fantasy_dict = dict(zip(season_long_table['Player'], season_long_table['FD_Fantasy']))
working_data = working_data[working_data['Pos'] == pos_var3]
working_data = working_data[working_data['Min'] >= min_var3[0]]
working_data = working_data[working_data['Min'] <= min_var3[1]]
working_data = working_data[working_data['spread'] >= spread_var3[0]]
working_data = working_data[working_data['spread'] <= spread_var3[1]]
working_data = working_data[working_data['Opp'] == team_var3]
working_data = working_data.reset_index(drop=True)
if disp_var3 == 'Fantasy':
gamelog_display = working_data[['Player', 'Pos', 'Team', 'Opp', 'Date', 'Min', 'Fantasy', 'FD_Fantasy']]
elif disp_var3 == 'Stats':
gamelog_data = working_data.reindex(matchup_disp_stats,axis="columns")
gamelog_display = gamelog_data
gamelog_display['Avg_Fantasy'] = gamelog_display['Player'].map(fantasy_dict)
gamelog_display['Avg_FD_Fantasy'] = gamelog_display['Player'].map(fd_fantasy_dict)
display = st.container()
# pages = pages.set_index('Player')
display.dataframe(gamelog_display.style.format(precision=2), height=500, use_container_width=True)
st.download_button(
label="Export Matchups Model",
data=convert_df_to_csv(gamelog_display),
file_name='Matchups_NBA_View.csv',
mime='text/csv',
)
with tab4:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset4'):
st.cache_data.clear()
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
if split_var5 == 'Specific Teams':
team_var4 = st.multiselect('Which teams would you like to view?', options = total_rot_teams, key='team_var4')
elif split_var5 == 'All':
team_var4 = total_rot_teams
with col2:
working_data = rot_table
rot_display = working_data[working_data['Team'].isin(team_var4)]
display = st.container()
# rot_display = rot_display.set_index('Player')
display.dataframe(rot_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), height=500, use_container_width=True)
st.download_button(
label="Export Rotations Model",
data=convert_df_to_csv(rot_display),
file_name='Rotations_NBA_View.csv',
mime='text/csv',
)
with tab5:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset5'):
st.cache_data.clear()
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
game_rot_view = st.radio("What set would you like to view?", ('Team Rotations', 'Player Rotations'), key='game_rot_view')
if game_rot_view == 'Team Rotations':
game_rot_team = st.selectbox("What team would you like to work with?", options = total_game_rot_teams, key='game_rot_team')
game_rot_spread = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='game_rot_spread')
game_rot_min = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='game_rot_min')
game_rot_dates = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='game_rot_dates')
if game_rot_dates == 'Specific Dates':
game_rot_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='game_rot_low_date')
if game_rot_low_date is not None:
game_rot_low_date = pd.to_datetime(low_date).date()
game_rot_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='game_rot_high_date')
if game_rot_high_date is not None:
game_rot_high_date = pd.to_datetime(high_date).date()
elif game_rot_dates == 'All':
game_rot_low_date = gamelog_table['Date'].min()
game_rot_high_date = gamelog_table['Date'].max()
elif game_rot_view == 'Player Rotations':
game_rot_team = st.multiselect("What players would you like to work with?", options = total_players, key='game_rot_team')
game_rot_spread = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='game_rot_spread')
game_rot_min = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='game_rot_min')
game_rot_dates = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='game_rot_dates')
if game_rot_dates == 'Specific Dates':
game_rot_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='game_rot_low_date')
if game_rot_low_date is not None:
game_rot_low_date = pd.to_datetime(game_rot_low_date).date()
game_rot_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='game_rot_high_date')
if game_rot_high_date is not None:
game_rot_high_date = pd.to_datetime(game_rot_high_date).date()
elif game_rot_dates == 'All':
game_rot_low_date = gamelog_table['Date'].min()
game_rot_high_date = gamelog_table['Date'].max()
with col2:
if game_rot_view == 'Player Rotations':
team_backlog = game_rot[game_rot['PLAYER_NAME'].isin(game_rot_team)]
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date >= game_rot_low_date]
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date <= game_rot_high_date]
team_backlog = team_backlog[team_backlog['MIN'] >= game_rot_min[0]]
team_backlog = team_backlog[team_backlog['MIN'] <= game_rot_min[1]]
team_backlog = team_backlog[team_backlog['spread'] >= game_rot_spread[0]]
team_backlog = team_backlog[team_backlog['spread'] <= game_rot_spread[1]]
working_data = game_rot
display = st.container()
stats_disp = st.container()
check_rotation = team_backlog.sort_values(by=['GAME_DATE', 'Finish'], ascending=[False, True])
# Ensure Start and Finish are numeric and Task is properly set
check_rotation['Start'] = pd.to_numeric(check_rotation['Start'], errors='coerce')
check_rotation['Finish'] = pd.to_numeric(check_rotation['Finish'], errors='coerce')
check_rotation['delta'] = pd.to_numeric(check_rotation['delta'], errors='coerce')
# Create figure
fig = go.Figure()
# Add bars for each shift
for idx, row in check_rotation.iterrows():
fig.add_trace(go.Bar(
x=[row['delta']], # Width of bar
y=[row['Task']],
base=row['Start'], # Start position of bar
orientation='h',
text=f"{row['delta']:.1f} Minutes",
textposition='inside',
showlegend=False,
marker_color=px.colors.qualitative.Plotly[hash(row['PLAYER_NAME']) % len(px.colors.qualitative.Plotly)]
))
# Update layout
fig.update_layout(
barmode='overlay',
xaxis=dict(
range=[0, 48],
title='Game Time (minutes)'
),
yaxis=dict(
autorange='reversed'
)
)
# Add quarter lines
fig.add_vline(x=12, line_width=3, line_dash="dash", line_color="green")
fig.add_vline(x=24, line_width=3, line_dash="dash", line_color="green")
fig.add_vline(x=36, line_width=3, line_dash="dash", line_color="green")
game_rot_stats = check_rotation.reindex(game_rot_cols,axis="columns")
game_rot_stats = game_rot_stats.drop_duplicates(subset='backlog_lookup')
# pages = pages.set_index('Player')
display.plotly_chart(fig, use_container_width=True)
stats_disp.dataframe(game_rot_stats.style.format(precision=2), hide_index=True, use_container_width = True)
elif game_rot_view == 'Team Rotations':
team_backlog = game_rot[game_rot['TEAM_ABBREVIATION'] == game_rot_team]
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date >= game_rot_low_date]
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date <= game_rot_high_date]
team_backlog = team_backlog[team_backlog['MIN'] >= game_rot_min[0]]
team_backlog = team_backlog[team_backlog['MIN'] <= game_rot_min[1]]
team_backlog = team_backlog[team_backlog['spread'] >= game_rot_spread[0]]
team_backlog = team_backlog[team_backlog['spread'] <= game_rot_spread[1]]
game_id_var = st.selectbox("What game would you like to view?", options = team_backlog['backlog_lookup'].unique(), key='game_id_var')
working_data = game_rot
display = st.container()
stats_disp = st.container()
check_rotation = working_data[working_data['backlog_lookup'] == game_id_var]
check_rotation = check_rotation.sort_values(by='Start', ascending=True)
game_rot_stats = check_rotation.reindex(game_rot_cols,axis="columns")
game_rot_stats = game_rot_stats.drop_duplicates(subset='PLAYER_NAME')
# Create figure
fig = go.Figure()
distinct_colors = [
'#1f77b4', # blue
'#ff7f0e', # orange
'#2ca02c', # green
'#d62728', # red
'#9467bd', # purple
'#8c564b', # brown
'#e377c2', # pink
'#7f7f7f', # gray
'#bcbd22', # yellow-green
'#17becf', # cyan
'#aec7e8', # light blue
'#ffbb78', # light orange
'#98df8a', # light green
'#ff9896', # light red
'#c5b0d5' # light purple
]
# Create a mapping of unique tasks to colors
unique_tasks = check_rotation['Task'].unique()
color_map = dict(zip(unique_tasks, distinct_colors[:len(unique_tasks)]))
# Add bars for each rotation shift
for idx, row in check_rotation.iterrows():
fig.add_trace(go.Bar(
x=[row['Finish'] - row['Start']], # Width of bar
y=[row['Task']],
base=row['Start'], # Start position of bar
orientation='h',
text=f"{row['minutes']:.1f} Minutes",
textposition='inside',
showlegend=False,
marker_color=color_map[row['Task']] # Use mapped color for task
))
# Update layout
fig.update_layout(
barmode='overlay',
xaxis=dict(
range=[0, 48],
title='Game Time (minutes)'
),
yaxis=dict(
autorange='reversed'
)
)
# Add quarter lines
fig.add_vline(x=12, line_width=3, line_dash="dash", line_color="green")
fig.add_vline(x=24, line_width=3, line_dash="dash", line_color="green")
fig.add_vline(x=36, line_width=3, line_dash="dash", line_color="green")
# pages = pages.set_index('Player')
display.plotly_chart(fig, use_container_width=True)
stats_disp.dataframe(game_rot_stats.style.format(precision=2), hide_index=True, use_container_width = True) |