Multichem commited on
Commit
6034111
·
1 Parent(s): 279ff8e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -112,13 +112,13 @@ def seasonlong_build(data_sample):
112
  season_long_table['Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('mean').astype(float)
113
  season_long_table['FD_Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('mean').astype(float)
114
  season_long_table['Rebound%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('sum').astype(int) /
115
- data_sample.groupby(['Player', 'Season'], sort=False)['reboundChancesTotal'].transform('sum').astype(int))
116
- season_long_table['Assists/Pass'] = (data_sample.groupby(['Player', 'Season'], sort=False)['assists'].transform('sum').astype(int) /
117
- data_sample.groupby(['Player', 'Season'], sort=False)['passes'].transform('sum').astype(int))
118
  season_long_table['Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('sum').astype(int) /
119
- data_sample.groupby(['Player', 'Season'], sort=False)['touches'].transform('sum').astype(int))
120
  season_long_table['FD Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('sum').astype(int) /
121
- data_sample.groupby(['Player', 'Season'], sort=False)['touches'].transform('sum').astype(int))
122
  season_long_table = season_long_table.drop_duplicates(subset='Player')
123
 
124
  season_long_table = season_long_table.set_axis(['Player', 'Team', 'Season', 'Date', 'Matchup', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
 
112
  season_long_table['Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('mean').astype(float)
113
  season_long_table['FD_Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('mean').astype(float)
114
  season_long_table['Rebound%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('sum').astype(int) /
115
+ data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('sum').astype(int))
116
+ season_long_table['Assists/Pass'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('sum').astype(int) /
117
+ data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('sum').astype(int))
118
  season_long_table['Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('sum').astype(int) /
119
+ data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
120
  season_long_table['FD Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('sum').astype(int) /
121
+ data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
122
  season_long_table = season_long_table.drop_duplicates(subset='Player')
123
 
124
  season_long_table = season_long_table.set_axis(['Player', 'Team', 'Season', 'Date', 'Matchup', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',