Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -60,9 +60,9 @@ def init_baselines():
|
|
60 |
|
61 |
fd_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
|
62 |
|
63 |
-
dk_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10
|
64 |
|
65 |
-
fd_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10
|
66 |
|
67 |
dk_proj_medians_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'DK_Salary', 'DK_Proj', 'Adj Median', 'DK_Avg_Val', 'Adj Ceiling', 'DK_Ceiling_Value']]
|
68 |
|
@@ -103,7 +103,7 @@ with col1:
|
|
103 |
'L3 Ceiling', 'Trend Min', 'Trend Median', 'Proj', 'Adj Median', 'Adj Ceiling',
|
104 |
'Salary', 'Avg_Val', 'Ceiling_Value'], axis=1)
|
105 |
minutes_table = minutes_table.set_axis(['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min'], axis=1)
|
106 |
-
medians_table = medians_table.set_axis(['PLAYER_NAME', 'Team', 'L10
|
107 |
proj_medians_table = proj_medians_table.set_axis(['PLAYER_NAME', 'Team', 'Position', 'Salary', 'Proj',
|
108 |
'Adj Median', 'Avg_Val', 'Adj Ceiling', 'Ceiling_Value'], axis=1)
|
109 |
if split_var1 == 'Overall':
|
@@ -166,7 +166,7 @@ with col2:
|
|
166 |
table_display = table_display[table_display['Position'].isin(pos_var1)]
|
167 |
table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
|
168 |
table_display = table_display.set_index('PLAYER_NAME')
|
169 |
-
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(
|
170 |
st.download_button(
|
171 |
label="Export Trending Numbers",
|
172 |
data=convert_df_to_csv(table_display),
|
@@ -177,7 +177,7 @@ with col2:
|
|
177 |
elif split_var1 == 'Minutes Trends':
|
178 |
table_display = minutes_table[minutes_table['Team'].isin(team_var1)]
|
179 |
table_display = table_display.set_index('PLAYER_NAME')
|
180 |
-
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(
|
181 |
st.download_button(
|
182 |
label="Export Trending Numbers",
|
183 |
data=convert_df_to_csv(table_display),
|
@@ -188,7 +188,7 @@ with col2:
|
|
188 |
elif split_var1 == 'Fantasy Trends':
|
189 |
table_display = medians_table[medians_table['Team'].isin(team_var1)]
|
190 |
table_display = table_display.set_index('PLAYER_NAME')
|
191 |
-
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(
|
192 |
st.download_button(
|
193 |
label="Export Trending Numbers",
|
194 |
data=convert_df_to_csv(table_display),
|
@@ -203,7 +203,7 @@ with col2:
|
|
203 |
table_display = table_display[table_display['Position'].isin(pos_var1)]
|
204 |
table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
|
205 |
table_display = table_display.set_index('PLAYER_NAME')
|
206 |
-
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(
|
207 |
st.download_button(
|
208 |
label="Export Trending Numbers",
|
209 |
data=convert_df_to_csv(table_display),
|
|
|
60 |
|
61 |
fd_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
|
62 |
|
63 |
+
dk_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 Fantasy', 'L5 Fantasy', 'L3 Fantasy', 'Trend Median']]
|
64 |
|
65 |
+
fd_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 FD_Fantasy', 'L5 FD_Fantasy', 'L3 FD_Fantasy', 'Trend FD_Median']]
|
66 |
|
67 |
dk_proj_medians_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'DK_Salary', 'DK_Proj', 'Adj Median', 'DK_Avg_Val', 'Adj Ceiling', 'DK_Ceiling_Value']]
|
68 |
|
|
|
103 |
'L3 Ceiling', 'Trend Min', 'Trend Median', 'Proj', 'Adj Median', 'Adj Ceiling',
|
104 |
'Salary', 'Avg_Val', 'Ceiling_Value'], axis=1)
|
105 |
minutes_table = minutes_table.set_axis(['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min'], axis=1)
|
106 |
+
medians_table = medians_table.set_axis(['PLAYER_NAME', 'Team', 'L10 Fantasy','L5 Fantasy', 'L3 Fantasy', 'Trend Median'], axis=1)
|
107 |
proj_medians_table = proj_medians_table.set_axis(['PLAYER_NAME', 'Team', 'Position', 'Salary', 'Proj',
|
108 |
'Adj Median', 'Avg_Val', 'Adj Ceiling', 'Ceiling_Value'], axis=1)
|
109 |
if split_var1 == 'Overall':
|
|
|
166 |
table_display = table_display[table_display['Position'].isin(pos_var1)]
|
167 |
table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
|
168 |
table_display = table_display.set_index('PLAYER_NAME')
|
169 |
+
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
170 |
st.download_button(
|
171 |
label="Export Trending Numbers",
|
172 |
data=convert_df_to_csv(table_display),
|
|
|
177 |
elif split_var1 == 'Minutes Trends':
|
178 |
table_display = minutes_table[minutes_table['Team'].isin(team_var1)]
|
179 |
table_display = table_display.set_index('PLAYER_NAME')
|
180 |
+
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
181 |
st.download_button(
|
182 |
label="Export Trending Numbers",
|
183 |
data=convert_df_to_csv(table_display),
|
|
|
188 |
elif split_var1 == 'Fantasy Trends':
|
189 |
table_display = medians_table[medians_table['Team'].isin(team_var1)]
|
190 |
table_display = table_display.set_index('PLAYER_NAME')
|
191 |
+
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
192 |
st.download_button(
|
193 |
label="Export Trending Numbers",
|
194 |
data=convert_df_to_csv(table_display),
|
|
|
203 |
table_display = table_display[table_display['Position'].isin(pos_var1)]
|
204 |
table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
|
205 |
table_display = table_display.set_index('PLAYER_NAME')
|
206 |
+
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
207 |
st.download_button(
|
208 |
label="Export Trending Numbers",
|
209 |
data=convert_df_to_csv(table_display),
|