Multichem commited on
Commit
5cc891a
·
1 Parent(s): 3096df7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -60,9 +60,9 @@ def init_baselines():
60
 
61
  fd_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
62
 
63
- dk_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 FANTASY', 'L5 FANTASY', 'L3 FANTASY', 'Trend Median']]
64
 
65
- fd_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 FD_FANTASY', 'L5 FD_FANTASY', 'L3 FD_FANTASY', 'Trend FD_Median']]
66
 
67
  dk_proj_medians_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'DK_Salary', 'DK_Proj', 'Adj Median', 'DK_Avg_Val', 'Adj Ceiling', 'DK_Ceiling_Value']]
68
 
@@ -103,7 +103,7 @@ with col1:
103
  'L3 Ceiling', 'Trend Min', 'Trend Median', 'Proj', 'Adj Median', 'Adj Ceiling',
104
  'Salary', 'Avg_Val', 'Ceiling_Value'], axis=1)
105
  minutes_table = minutes_table.set_axis(['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min'], axis=1)
106
- medians_table = medians_table.set_axis(['PLAYER_NAME', 'Team', 'L10 FANTASY','L5 FANTASY', 'L3 FANTASY', 'Trend Median'], axis=1)
107
  proj_medians_table = proj_medians_table.set_axis(['PLAYER_NAME', 'Team', 'Position', 'Salary', 'Proj',
108
  'Adj Median', 'Avg_Val', 'Adj Ceiling', 'Ceiling_Value'], axis=1)
109
  if split_var1 == 'Overall':
@@ -166,7 +166,7 @@ with col2:
166
  table_display = table_display[table_display['Position'].isin(pos_var1)]
167
  table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
168
  table_display = table_display.set_index('PLAYER_NAME')
169
- st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
170
  st.download_button(
171
  label="Export Trending Numbers",
172
  data=convert_df_to_csv(table_display),
@@ -177,7 +177,7 @@ with col2:
177
  elif split_var1 == 'Minutes Trends':
178
  table_display = minutes_table[minutes_table['Team'].isin(team_var1)]
179
  table_display = table_display.set_index('PLAYER_NAME')
180
- st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
181
  st.download_button(
182
  label="Export Trending Numbers",
183
  data=convert_df_to_csv(table_display),
@@ -188,7 +188,7 @@ with col2:
188
  elif split_var1 == 'Fantasy Trends':
189
  table_display = medians_table[medians_table['Team'].isin(team_var1)]
190
  table_display = table_display.set_index('PLAYER_NAME')
191
- st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
192
  st.download_button(
193
  label="Export Trending Numbers",
194
  data=convert_df_to_csv(table_display),
@@ -203,7 +203,7 @@ with col2:
203
  table_display = table_display[table_display['Position'].isin(pos_var1)]
204
  table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
205
  table_display = table_display.set_index('PLAYER_NAME')
206
- st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
207
  st.download_button(
208
  label="Export Trending Numbers",
209
  data=convert_df_to_csv(table_display),
 
60
 
61
  fd_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
62
 
63
+ dk_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 Fantasy', 'L5 Fantasy', 'L3 Fantasy', 'Trend Median']]
64
 
65
+ fd_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 FD_Fantasy', 'L5 FD_Fantasy', 'L3 FD_Fantasy', 'Trend FD_Median']]
66
 
67
  dk_proj_medians_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'DK_Salary', 'DK_Proj', 'Adj Median', 'DK_Avg_Val', 'Adj Ceiling', 'DK_Ceiling_Value']]
68
 
 
103
  'L3 Ceiling', 'Trend Min', 'Trend Median', 'Proj', 'Adj Median', 'Adj Ceiling',
104
  'Salary', 'Avg_Val', 'Ceiling_Value'], axis=1)
105
  minutes_table = minutes_table.set_axis(['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min'], axis=1)
106
+ medians_table = medians_table.set_axis(['PLAYER_NAME', 'Team', 'L10 Fantasy','L5 Fantasy', 'L3 Fantasy', 'Trend Median'], axis=1)
107
  proj_medians_table = proj_medians_table.set_axis(['PLAYER_NAME', 'Team', 'Position', 'Salary', 'Proj',
108
  'Adj Median', 'Avg_Val', 'Adj Ceiling', 'Ceiling_Value'], axis=1)
109
  if split_var1 == 'Overall':
 
166
  table_display = table_display[table_display['Position'].isin(pos_var1)]
167
  table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
168
  table_display = table_display.set_index('PLAYER_NAME')
169
+ st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
170
  st.download_button(
171
  label="Export Trending Numbers",
172
  data=convert_df_to_csv(table_display),
 
177
  elif split_var1 == 'Minutes Trends':
178
  table_display = minutes_table[minutes_table['Team'].isin(team_var1)]
179
  table_display = table_display.set_index('PLAYER_NAME')
180
+ st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
181
  st.download_button(
182
  label="Export Trending Numbers",
183
  data=convert_df_to_csv(table_display),
 
188
  elif split_var1 == 'Fantasy Trends':
189
  table_display = medians_table[medians_table['Team'].isin(team_var1)]
190
  table_display = table_display.set_index('PLAYER_NAME')
191
+ st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
192
  st.download_button(
193
  label="Export Trending Numbers",
194
  data=convert_df_to_csv(table_display),
 
203
  table_display = table_display[table_display['Position'].isin(pos_var1)]
204
  table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
205
  table_display = table_display.set_index('PLAYER_NAME')
206
+ st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
207
  st.download_button(
208
  label="Export Trending Numbers",
209
  data=convert_df_to_csv(table_display),