Multichem commited on
Commit
26882e5
·
verified ·
1 Parent(s): e1d3879

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -77,7 +77,7 @@ prop_table_options = ['NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_RECEIVIN
77
  prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
78
  'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
79
  all_sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
80
- sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
81
 
82
  tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
83
 
@@ -389,7 +389,7 @@ with tab6:
389
  for books in ['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS']:
390
  prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
391
  prop_df = prop_df.loc[prop_df['prop_type'] == prop]
392
- prop_df = prop_df[~((prop_df['over_prop'] < 10) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
393
  prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
394
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
395
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
@@ -472,7 +472,7 @@ with tab6:
472
  players_only['Player'] = hold_file[['Player']]
473
  players_only['Team'] = players_only['Player'].map(team_dict)
474
 
475
- leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
476
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
477
 
478
  final_outcomes = sim_all_hold
@@ -499,7 +499,7 @@ with tab6:
499
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
500
  elif prop_type_var == "rush_yards":
501
  prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
502
- prop_df = prop_df[~((prop_df['over_prop'] < 10) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
503
  prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
504
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
505
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
@@ -622,11 +622,12 @@ with tab6:
622
  players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
623
  players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
624
  players_only['Edge'] = players_only['Bet_check']
 
625
 
626
  players_only['Player'] = hold_file[['Player']]
627
  players_only['Team'] = players_only['Player'].map(team_dict)
628
 
629
- leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
630
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
631
 
632
  final_outcomes = sim_all_hold
 
77
  prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
78
  'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
79
  all_sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
80
+ sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
81
 
82
  tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
83
 
 
389
  for books in ['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS']:
390
  prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
391
  prop_df = prop_df.loc[prop_df['prop_type'] == prop]
392
+ prop_df = prop_df[~((prop_df['over_prop'] < 15) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
393
  prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
394
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
395
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
 
472
  players_only['Player'] = hold_file[['Player']]
473
  players_only['Team'] = players_only['Player'].map(team_dict)
474
 
475
+ leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
476
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
477
 
478
  final_outcomes = sim_all_hold
 
499
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
500
  elif prop_type_var == "rush_yards":
501
  prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
502
+ prop_df = prop_df[~((prop_df['over_prop'] < 15) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
503
  prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
504
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
505
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
 
622
  players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
623
  players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
624
  players_only['Edge'] = players_only['Bet_check']
625
+ players_only['Prop type'] = prop
626
 
627
  players_only['Player'] = hold_file[['Player']]
628
  players_only['Team'] = players_only['Player'].map(team_dict)
629
 
630
+ leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
631
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
632
 
633
  final_outcomes = sim_all_hold