Multichem commited on
Commit
b36c2ee
·
1 Parent(s): 3e4eab8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -10
app.py CHANGED
@@ -840,6 +840,8 @@ with tab2:
840
  st.info(t_stamp)
841
  if st.button("Load/Reset Data", key='reset1'):
842
  st.cache_data.clear()
 
 
843
  dk_roo_raw = load_dk_player_projections()
844
  fd_roo_raw = load_fd_player_projections()
845
  t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
@@ -891,7 +893,20 @@ with tab2:
891
  st.session_state.Sim_Winner_Frame = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
892
  if 'Sim_Winner_Export' not in st.session_state:
893
  st.session_state.Sim_Winner_Export = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
894
-
 
 
 
 
 
 
 
 
 
 
 
 
 
895
  with col2:
896
  with st.container():
897
  if st.button("Simulate Contest"):
@@ -1340,8 +1355,16 @@ with tab2:
1340
 
1341
  with st.container():
1342
  simulate_container = st.empty()
1343
- if "df" not in st.session_state:
1344
- st.session_state["df"] = None
 
 
 
 
 
 
 
 
1345
  st.dataframe(st.session_state.Sim_Winner_Frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
1346
 
1347
  st.download_button(
@@ -1358,7 +1381,7 @@ with tab2:
1358
  st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1359
  st.download_button(
1360
  label="Export Exposures",
1361
- data=convert_df_to_csv(player_freq),
1362
  file_name='player_freq_export.csv',
1363
  mime='text/csv',
1364
  )
@@ -1366,7 +1389,7 @@ with tab2:
1366
  st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1367
  st.download_button(
1368
  label="Export Exposures",
1369
- data=convert_df_to_csv(qb_freq),
1370
  file_name='qb_freq_export.csv',
1371
  mime='text/csv',
1372
  )
@@ -1374,7 +1397,7 @@ with tab2:
1374
  st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1375
  st.download_button(
1376
  label="Export Exposures",
1377
- data=convert_df_to_csv(rb_freq),
1378
  file_name='rb_freq_export.csv',
1379
  mime='text/csv',
1380
  )
@@ -1382,7 +1405,7 @@ with tab2:
1382
  st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1383
  st.download_button(
1384
  label="Export Exposures",
1385
- data=convert_df_to_csv(wr_freq),
1386
  file_name='wr_freq_export.csv',
1387
  mime='text/csv',
1388
  )
@@ -1390,7 +1413,7 @@ with tab2:
1390
  st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1391
  st.download_button(
1392
  label="Export Exposures",
1393
- data=convert_df_to_csv(te_freq),
1394
  file_name='te_freq_export.csv',
1395
  mime='text/csv',
1396
  )
@@ -1398,7 +1421,7 @@ with tab2:
1398
  st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1399
  st.download_button(
1400
  label="Export Exposures",
1401
- data=convert_df_to_csv(flex_freq),
1402
  file_name='flex_freq_export.csv',
1403
  mime='text/csv',
1404
  )
@@ -1406,7 +1429,7 @@ with tab2:
1406
  st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1407
  st.download_button(
1408
  label="Export Exposures",
1409
- data=convert_df_to_csv(dst_freq),
1410
  file_name='dst_freq_export.csv',
1411
  mime='text/csv',
1412
  )
 
840
  st.info(t_stamp)
841
  if st.button("Load/Reset Data", key='reset1'):
842
  st.cache_data.clear()
843
+ for key in st.session_state.keys():
844
+ del st.session_state[key]
845
  dk_roo_raw = load_dk_player_projections()
846
  fd_roo_raw = load_fd_player_projections()
847
  t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
 
893
  st.session_state.Sim_Winner_Frame = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
894
  if 'Sim_Winner_Export' not in st.session_state:
895
  st.session_state.Sim_Winner_Export = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
896
+ if 'player_freq' not in st.session_state:
897
+ st.session_state.player_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
898
+ if 'qb_freq' not in st.session_state:
899
+ st.session_state.qb_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
900
+ if 'rb_freq' not in st.session_state:
901
+ st.session_state.rb_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
902
+ if 'wr_freq' not in st.session_state:
903
+ st.session_state.wr_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
904
+ if 'te_freq' not in st.session_state:
905
+ st.session_state.te_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
906
+ if 'flex_freq' not in st.session_state:
907
+ st.session_state.flex_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
908
+ if 'dst_freq' not in st.session_state:
909
+ st.session_state.dst_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
910
  with col2:
911
  with st.container():
912
  if st.button("Simulate Contest"):
 
1355
 
1356
  with st.container():
1357
  simulate_container = st.empty()
1358
+ player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
1359
+ if player_split_var2 == 'Specific Players':
1360
+ find_var2 = st.multiselect('Which players must be included in the lineups?', options = player_freq['Player'].unique())
1361
+ elif player_split_var2 == 'Full Players':
1362
+ find_var2 = player_freq.Player.values.tolist()
1363
+
1364
+ if player_split_var2 == 'Specific Players':
1365
+ st.session_state.Sim_Winner_Frame = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(copy=False), find_var2).any(axis=1).all(axis=1)]
1366
+ elif player_split_var2 == 'Full Players':
1367
+ st.session_state.Sim_Winner_Frame = st.session_state.Sim_Winner_Frame
1368
  st.dataframe(st.session_state.Sim_Winner_Frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
1369
 
1370
  st.download_button(
 
1381
  st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1382
  st.download_button(
1383
  label="Export Exposures",
1384
+ data=convert_df_to_csv(st.session_state.player_freq),
1385
  file_name='player_freq_export.csv',
1386
  mime='text/csv',
1387
  )
 
1389
  st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1390
  st.download_button(
1391
  label="Export Exposures",
1392
+ data=convert_df_to_csv(st.session_state.qb_freq),
1393
  file_name='qb_freq_export.csv',
1394
  mime='text/csv',
1395
  )
 
1397
  st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1398
  st.download_button(
1399
  label="Export Exposures",
1400
+ data=convert_df_to_csv(st.session_state.rb_freq),
1401
  file_name='rb_freq_export.csv',
1402
  mime='text/csv',
1403
  )
 
1405
  st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1406
  st.download_button(
1407
  label="Export Exposures",
1408
+ data=convert_df_to_csv(st.session_state.wr_freq),
1409
  file_name='wr_freq_export.csv',
1410
  mime='text/csv',
1411
  )
 
1413
  st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1414
  st.download_button(
1415
  label="Export Exposures",
1416
+ data=convert_df_to_csv(st.session_state.te_freq),
1417
  file_name='te_freq_export.csv',
1418
  mime='text/csv',
1419
  )
 
1421
  st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1422
  st.download_button(
1423
  label="Export Exposures",
1424
+ data=convert_df_to_csv(st.session_state.flex_freq),
1425
  file_name='flex_freq_export.csv',
1426
  mime='text/csv',
1427
  )
 
1429
  st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1430
  st.download_button(
1431
  label="Export Exposures",
1432
+ data=convert_df_to_csv(st.session_state.dst_freq),
1433
  file_name='dst_freq_export.csv',
1434
  mime='text/csv',
1435
  )