Spaces:
Running
Running
File size: 94,402 Bytes
368acd3 49e77f1 368acd3 6f51338 368acd3 6f51338 368acd3 6f51338 49e77f1 6f51338 49e77f1 6f51338 49e77f1 b60f1b9 6f51338 49e77f1 6f51338 49e77f1 38da73d 6f51338 49e77f1 38da73d 6f51338 49e77f1 38da73d 6f51338 49e77f1 6f51338 49e77f1 6f51338 49e77f1 6f51338 49e77f1 6f51338 49e77f1 6e7a3b8 49e77f1 a8bd03f 49e77f1 a8bd03f 49e77f1 6f51338 49e77f1 6f51338 49e77f1 4a110f1 49e77f1 32b7ae1 49e77f1 25917df 841b7c8 49e77f1 32b7ae1 49e77f1 25917df a5e8911 49e77f1 6e7a3b8 49e77f1 e374d37 8c6ff6e 49e77f1 c9f3a65 49e77f1 fa65c40 49e77f1 fa65c40 49e77f1 0f6c775 49e77f1 3b6c847 49e77f1 841b7c8 6d1aa19 fb0e171 841b7c8 6d1aa19 fb0e171 841b7c8 daa71a3 841b7c8 49e77f1 841b7c8 6d1aa19 fb0e171 342b4dc 6d1aa19 fb0e171 daa71a3 841b7c8 49e77f1 fa65c40 49e77f1 fa65c40 49e77f1 fbb1ea4 49e77f1 943c5f5 49e77f1 fa65c40 49e77f1 0f6c775 49e77f1 b03db49 49e77f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": st.secrets['sheets_api_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
NFL_Data = st.secrets["NFL_data"]
gc_con = gspread.service_account_from_dict(credentials, scope)
return gc_con, NFL_Data
gc, all_dk_player_projections = init_conn()
wrong_acro = ['WSH', 'AZ']
right_acro = ['WAS', 'ARI']
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
expose_format = {'Proj Own': '{:.2%}','Exposure': '{:.2%}'}
@st.cache_resource(ttl = 599)
def init_baselines():
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('Site_Info')
raw_display = pd.DataFrame(worksheet.get_all_records())
site_slates = raw_display
worksheet = sh.worksheet('Player_Projections')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display[raw_display['Position'] != 'K']
player_stats = raw_display
worksheet = sh.worksheet('DK_ROO')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
raw_display = load_display.dropna(subset=['Median'])
raw_display = raw_display[raw_display['Position'] != 'K']
dk_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
dk_roo_raw = raw_display
worksheet = sh.worksheet('FD_ROO')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
raw_display = load_display.dropna(subset=['Median'])
raw_display = raw_display[raw_display['Position'] != 'K']
fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
fd_roo_raw = raw_display
worksheet = sh.worksheet('DK_Stacks')
load_display = pd.DataFrame(worksheet.get_all_records())
raw_display = load_display
raw_display = raw_display.sort_values(by='Own', ascending=False)
dk_stacks_raw = raw_display
worksheet = sh.worksheet('FD_Stacks')
load_display = pd.DataFrame(worksheet.get_all_records())
raw_display = load_display
raw_display = raw_display.sort_values(by='Own', ascending=False)
fd_stacks_raw = raw_display
return site_slates, player_stats, dk_roo_raw, fd_roo_raw, dk_stacks_raw, fd_stacks_raw, dk_ids, fd_ids
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
site_slates, player_stats, dk_roo_raw, fd_roo_raw, dk_stacks_raw, fd_stacks_raw, dkid_dict, fdid_dict = init_baselines()
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
col1, col2 = st.columns([1, 5])
opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
tab1, tab2 = st.tabs(['Optimizer', 'Uploads and Info'])
with tab2:
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
col1, col2 = st.columns([1, 5])
with col1:
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
if proj_file is not None:
try:
proj_dataframe = pd.read_csv(proj_file)
except:
proj_dataframe = pd.read_excel(proj_file)
with col2:
if proj_file is not None:
st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with tab1:
col1, col2 = st.columns([1, 5])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
site_slates, player_stats, dk_roo_raw, fd_roo_raw, dk_stacks_raw, fd_stacks_raw, dk_ids, fd_ids = init_baselines()
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
col1, col2 = st.columns([1, 5])
opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'All Games', 'User'), key='slate_var1')
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
if site_var1 == 'Draftkings':
if slate_var1 == 'User':
raw_baselines = proj_dataframe
elif slate_var1 != 'User':
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var1)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
elif site_var1 == 'Fanduel':
if slate_var1 == 'User':
raw_baselines = proj_dataframe
elif slate_var1 != 'User':
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var1)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
contest_var1 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'Small Field GPP', 'Large Field GPP', 'Round Robin'), key='contest_var1')
trim_choice1 = st.selectbox("Allow overowned lineups?", options = ['Yes', 'No'])
if trim_choice1 == 'Yes':
trim_var1 = 0
elif trim_choice1 == 'No':
trim_var1 = 1
if contest_var1 == 'Small Field GPP':
st.info('The Pivot optimal uses backend functions to create a stack and lock in certain pieces, if you want control over QB pairing use the Manual model instead.')
opto_var1 = st.selectbox("Pivot optimal or Manual?", ('Pivot Optimal', 'Manual'), key='opto_var1')
if opto_var1 == "Manual":
stack_var1 = st.selectbox('Which teams are you stacking?', options = raw_baselines['Team'].unique(), key='stack_var1')
opp_var1 = opp_dict[stack_var1]
qbstack_var1 = st.selectbox('How many forced WR/TE stacked with QB?', options = [1, 2], key='qbstack_var1')
ministack_var1 = st.selectbox('How many forced bring backs?', options = [0, 1, 2], key='ministack_var1')
elif contest_var1 == 'Large Field GPP':
st.info('The Pivot optimal uses backend functions to create a stack and lock in certain pieces, if you want control over QB pairing use the Manual model instead.')
opto_var1 = st.selectbox("Pivot optimal or Manual?", ('Pivot Optimal', 'Manual'), key='opto_var1')
if opto_var1 == "Manual":
stack_var1 = st.selectbox('Which team are you stacking?', options = raw_baselines['Team'].unique(), key='stack_var1')
opp_var1 = opp_dict[stack_var1]
qbstack_var1 = st.selectbox('How many forced WR/TE stacked with QB?', options = [1, 2], key='qbstack_var1')
ministack_var1 = st.selectbox('How many forced bring backs?', options = [0, 1, 2], key='ministack_var1')
elif contest_var1 == 'Round Robin':
st.info('A Round Robin optimization will run a single optimal for all the teams on the slate based on your stacking inputs')
qbstack_var1 = st.selectbox('How many forced WR/TE stacked with QB?', options = [1, 2], key='qbstack_var1')
ministack_var1 = st.selectbox('How many forced bring backs?', options = [0, 1, 2], key='ministack_var1')
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
if split_var1 == 'Specific Games':
team_var1 = st.multiselect('Which teams would you like to include in the optimization?', options = raw_baselines['Team'].unique(), key='team_var1')
elif split_var1 == 'Full Slate Run':
team_var1 = raw_baselines.Team.values.tolist()
lock_var1 = st.multiselect("Are there any players you want to use in all lineups (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var1')
avoid_var1 = st.multiselect("Are there any players you want to remove from the pool (Drop Button)?", options = raw_baselines['Player'].unique(), key='avoid_var1')
if contest_var1 == 'Round Robin':
linenum_var1 = len(raw_baselines['Team'].unique())
elif contest_var1 != 'Round Robin':
linenum_var1 = st.number_input("How many lineups would you like to produce?", min_value = 1, max_value = 300, value = 20, step = 1, key='linenum_var1')
if site_var1 == 'Draftkings':
min_sal1 = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100, key='max_sal1')
elif site_var1 == 'Fanduel':
min_sal1 = st.number_input('Min Salary', min_value = 45000, max_value = 59900, value = 59000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 45000, max_value = 60000, value = 60000, step = 100, key='max_sal1')
with col2:
raw_baselines = raw_baselines[raw_baselines['Team'].isin(team_var1)]
raw_baselines = raw_baselines[~raw_baselines['Player'].isin(avoid_var1)]
ownframe = raw_baselines.copy()
if contest_var1 == 'Cash':
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (10 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (900 / ownframe['Own%'].sum())
if contest_var1 == 'Small Field GPP':
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (900 / ownframe['Own%'].sum())
if contest_var1 == 'Large Field GPP':
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (1.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (900 / ownframe['Own%'].sum())
raw_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
raw_baselines['lock'] = np.where(raw_baselines['Player'].isin(lock_var1), 1, 0)
st.dataframe(raw_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Projections",
data=convert_df_to_csv(raw_baselines),
file_name='NFL_proj_export.csv',
mime='text/csv',
)
if st.button('Optimize'):
max_proj = 1000
max_own = 1000
total_proj = 0
total_own = 0
optimize_container = st.empty()
download_container = st.empty()
freq_container = st.empty()
lineup_display = []
check_list = []
lineups = []
portfolio = pd.DataFrame()
x = 1
with st.spinner('Wait for it...'):
with optimize_container:
if contest_var1 == 'Round Robin':
while x <= len(raw_baselines['Team'].unique()):
stack_var1 = raw_baselines['Team'].unique()[x-1]
if site_var1 == 'Draftkings':
opp_var1 = opp_dict[stack_var1]
elif site_var1 == 'Fanduel':
if stack_var1 == 'JAC':
opp_var1 = opp_dict['JAX']
elif stack_var1 != 'JAC':
opp_var1 = opp_dict[stack_var1]
st.write(stack_var1)
sorted_lineup = []
p_used = []
cvar = 0
firvar = 0
secvar = 0
thirvar = 0
raw_proj_file = raw_baselines
raw_flex_file = raw_proj_file.dropna(how='all')
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
flex_file = raw_flex_file
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
flex_file['name_var'] = flex_file['Player']
flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var1), 1, 0)
player_ids = flex_file.index
overall_players = flex_file[['Player']]
overall_players['player_var_add'] = flex_file.index
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1
if site_var1 == 'Draftkings':
if contest_var1 == 'Cash':
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
elif contest_var1 == 'Small Field GPP':
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
st.table(qbfile)
#st.write(stack_var1 + ' ' + qb_var)
for qbid in player_ids:
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-qbstack_var1*player_vars[qbid]]) >= 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('RB'))] +
[0*player_vars[qbid]]) == 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == opp_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-ministack_var1*player_vars[qbid]]) >= 0
for flex in flex_file['Player'].unique():
sub_idx = flex_file[flex_file['Player'] == qb_var].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
elif contest_var1 == 'Round Robin':
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
st.table(qbfile)
#st.write(stack_var1 + ' ' + qb_var)
for qbid in player_ids:
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-qbstack_var1*player_vars[qbid]]) >= 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('RB'))] +
[0*player_vars[qbid]]) == 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == opp_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-ministack_var1*player_vars[qbid]]) >= 0
for flex in flex_file['Player'].unique():
sub_idx = flex_file[flex_file['Player'] == qb_var].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
elif contest_var1 == 'Large Field GPP':
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
st.table(qbfile)
#st.write(stack_var1 + ' ' + qb_var)
for qbid in player_ids:
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-qbstack_var1*player_vars[qbid]]) >= 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('RB'))] +
[0*player_vars[qbid]]) == 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == opp_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-ministack_var1*player_vars[qbid]]) >= 0
for flex in flex_file['Player'].unique():
sub_idx = flex_file[flex_file['Player'] == qb_var].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "Var"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "QB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "RB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "RB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "WR"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "WR"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "TE"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "DST"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
elif site_var1 == 'Fanduel':
if contest_var1 == 'Cash':
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
elif contest_var1 == 'Small Field GPP':
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
st.table(qbfile)
#st.write(stack_var1 + ' ' + qb_var)
for qbid in player_ids:
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-qbstack_var1*player_vars[qbid]]) >= 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('RB'))] +
[0*player_vars[qbid]]) == 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == opp_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-ministack_var1*player_vars[qbid]]) >= 0
for flex in flex_file['Player'].unique():
sub_idx = flex_file[flex_file['Player'] == qb_var].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
elif contest_var1 == 'Round Robin':
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
st.table(qbfile)
#st.write(stack_var1 + ' ' + qb_var)
for qbid in player_ids:
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-qbstack_var1*player_vars[qbid]]) >= 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('RB'))] +
[0*player_vars[qbid]]) == 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == opp_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-ministack_var1*player_vars[qbid]]) >= 0
for flex in flex_file['Player'].unique():
sub_idx = flex_file[flex_file['Player'] == qb_var].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
elif contest_var1 == 'Large Field GPP':
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
st.table(qbfile)
#st.write(stack_var1 + ' ' + qb_var)
for qbid in player_ids:
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-qbstack_var1*player_vars[qbid]]) >= 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('RB'))] +
[0*player_vars[qbid]]) == 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == opp_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-ministack_var1*player_vars[qbid]]) >= 0
for flex in flex_file['Player'].unique():
sub_idx = flex_file[flex_file['Player'] == qb_var].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "Var"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "QB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "RB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "RB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "WR"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "WR"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "TE"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "DST"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
player_count = []
player_trim = []
lineup_list = []
if contest_var1 == 'Cash':
obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
elif contest_var1 != 'Cash':
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score.solve()
for v in total_score.variables():
if v.varValue > 0:
lineup_list.append(v.name)
df = pd.DataFrame(lineup_list)
df['Names'] = df[0].map(player_match)
df['Cost'] = df['Names'].map(player_sal)
df['Proj'] = df['Names'].map(player_proj)
df['Own'] = df['Names'].map(player_own)
total_cost = sum(df['Cost'])
total_own = sum(df['Own'])
total_proj = sum(df['Proj'])
lineup_raw = pd.DataFrame(lineup_list)
lineup_raw['Names'] = lineup_raw[0].map(player_match)
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
lineup_final = lineup_raw.sort_values(by=['value'])
del lineup_final[lineup_final.columns[0]]
del lineup_final[lineup_final.columns[1]]
lineup_final = lineup_final.reset_index(drop=True)
if site_var1 == 'Draftkings':
line_hold = lineup_final[['Names']]
line_hold['pos'] = line_hold['Names'].map(player_pos)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] == 'QB':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
rbvar = 0
for pname in range(0,len(line_hold)):
if rbvar == 2:
pname = len(line_hold)
elif rbvar < 2:
if line_hold.iat[pname,1] == 'RB':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
rbvar = rbvar + 1
p_used.extend(sorted_lineup)
wrvar = 0
for pname in range(0,len(line_hold)):
if wrvar == 3:
pname = len(line_hold)
elif wrvar < 3:
if line_hold.iat[pname,1] == 'WR':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
wrvar = wrvar + 1
p_used.extend(sorted_lineup)
tevar = 0
for pname in range(0,len(line_hold)):
if tevar == 1:
pname = len(line_hold)
elif tevar < 1:
if line_hold.iat[pname,1] == 'TE':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
tevar = tevar + 1
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] != 'DST':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] == 'DST':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
lineup_final['sorted'] = sorted_lineup
lineup_final = lineup_final.drop(columns=['Names'])
lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
elif site_var1 == 'Fanduel':
line_hold = lineup_final[['Names']]
line_hold['pos'] = line_hold['Names'].map(player_pos)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] == 'QB':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
rbvar = 0
for pname in range(0,len(line_hold)):
if rbvar == 2:
pname = len(line_hold)
elif rbvar < 2:
if line_hold.iat[pname,1] == 'RB':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
rbvar = rbvar + 1
p_used.extend(sorted_lineup)
wrvar = 0
for pname in range(0,len(line_hold)):
if wrvar == 3:
pname = len(line_hold)
elif wrvar < 3:
if line_hold.iat[pname,1] == 'WR':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
wrvar = wrvar + 1
p_used.extend(sorted_lineup)
tevar = 0
for pname in range(0,len(line_hold)):
if tevar == 1:
pname = len(line_hold)
elif tevar < 1:
if line_hold.iat[pname,1] == 'TE':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
tevar = tevar + 1
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] != 'DST':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] == 'DST':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
lineup_final['sorted'] = sorted_lineup
lineup_final = lineup_final.drop(columns=['Names'])
lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
lineup_test = lineup_final
lineup_final = lineup_final.T
lineup_final['Cost'] = total_cost
lineup_final['Proj'] = total_proj
lineup_final['Own'] = total_own
lineup_test['Team'] = lineup_test['Names'].map(player_team)
lineup_test['Position'] = lineup_test['Names'].map(player_pos)
lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
lineup_test['Own'] = lineup_test['Names'].map(player_own)
lineup_test = lineup_test.set_index('Names')
lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)
lineup_display.append(lineup_test)
with col2:
with st.container():
st.table(lineup_test)
max_proj = total_proj
max_own = total_own
check_list.append(total_proj)
portfolio = pd.concat([portfolio, lineup_final], ignore_index = True)
x += 1
elif contest_var1 != 'Round Robin':
while x <= linenum_var1:
sorted_lineup = []
p_used = []
cvar = 0
firvar = 0
secvar = 0
thirvar = 0
raw_proj_file = raw_baselines
raw_flex_file = raw_proj_file.dropna(how='all')
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
flex_file = raw_flex_file
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
flex_file['name_var'] = flex_file['Player']
flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var1), 1, 0)
player_ids = flex_file.index
overall_players = flex_file[['Player']]
overall_players['player_var_add'] = flex_file.index
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1
if site_var1 == 'Draftkings':
if contest_var1 == 'Cash':
qbfile = flex_file
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
elif contest_var1 == 'Small Field GPP':
if opto_var1 == "Pivot Optimal":
qbstack_var1 = 2
ministack_var1 = 0
dk_stacks_raw = dk_stacks_raw[dk_stacks_raw['Team'].isin(team_var1)]
dk_stacks_raw = dk_stacks_raw.sort_values(by='Own', ascending=False)
dk_stacks_raw.reset_index(drop=True)
fd_stacks_raw = fd_stacks_raw[fd_stacks_raw['Team'].isin(team_var1)]
dk_stacks_raw = dk_stacks_raw.sort_values(by='Own', ascending=False)
fd_stacks_raw.reset_index(drop=True)
dk_Max_Rank = dk_stacks_raw['Team'].values[0]
fd_Max_Rank = fd_stacks_raw['Team'].values[0]
stack_var1 = dk_Max_Rank
opp_var1 = opp_dict[stack_var1]
st.table(dk_stacks_raw)
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
st.table(qbfile)
#st.write(stack_var1 + ' ' + qb_var)
for qbid in player_ids:
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-qbstack_var1*player_vars[qbid]]) >= 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('RB'))] +
[0*player_vars[qbid]]) == 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == opp_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-ministack_var1*player_vars[qbid]]) >= 0
for flex in flex_file['Player'].unique():
sub_idx = flex_file[flex_file['Player'] == qb_var].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
elif contest_var1 == 'Large Field GPP':
if opto_var1 == "Pivot Optimal":
qbstack_var1 = 2
ministack_var1 = 0
dk_stacks_raw = dk_stacks_raw[dk_stacks_raw['Team'].isin(team_var1)]
dk_stacks_raw = dk_stacks_raw.sort_values(by='Median', ascending=False)
dk_stacks_raw.reset_index(drop=True)
fd_stacks_raw = fd_stacks_raw[fd_stacks_raw['Team'].isin(team_var1)]
dk_stacks_raw = dk_stacks_raw.sort_values(by='Median', ascending=False)
fd_stacks_raw.reset_index(drop=True)
dk_Max_Rank = dk_stacks_raw['Team'].values[0]
fd_Max_Rank = fd_stacks_raw['Team'].values[0]
stack_var1 = dk_Max_Rank
opp_var1 = opp_dict[stack_var1]
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
st.table(qbfile)
#st.write(stack_var1 + ' ' + qb_var)
for qbid in player_ids:
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-qbstack_var1*player_vars[qbid]]) >= 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('RB'))] +
[0*player_vars[qbid]]) == 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == opp_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-ministack_var1*player_vars[qbid]]) >= 0
for flex in flex_file['Player'].unique():
sub_idx = flex_file[flex_file['Player'] == qb_var].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "Var"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "QB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "RB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "RB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "WR"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "WR"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "TE"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "DST"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
elif site_var1 == 'Fanduel':
if contest_var1 == 'Cash':
qbfile = flex_file
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
elif contest_var1 == 'Small Field GPP':
if opto_var1 == "Pivot Optimal":
qbstack_var1 = 2
ministack_var1 = 0
dk_stacks_raw = dk_stacks_raw[dk_stacks_raw['Team'].isin(team_var1)]
dk_stacks_raw = dk_stacks_raw.sort_values(by='Own', ascending=False)
dk_stacks_raw.reset_index(drop=True)
fd_stacks_raw = fd_stacks_raw[fd_stacks_raw['Team'].isin(team_var1)]
dk_stacks_raw = dk_stacks_raw.sort_values(by='Own', ascending=False)
fd_stacks_raw.reset_index(drop=True)
dk_Max_Rank = dk_stacks_raw['Team'].values[0]
fd_Max_Rank = fd_stacks_raw['Team'].values[0]
stack_var1 = dk_Max_Rank
opp_var1 = opp_dict[stack_var1]
st.table(fd_stacks_raw)
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
st.table(qbfile)
#st.write(stack_var1 + ' ' + qb_var)
for qbid in player_ids:
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-qbstack_var1*player_vars[qbid]]) >= 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('RB'))] +
[0*player_vars[qbid]]) == 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == opp_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-ministack_var1*player_vars[qbid]]) >= 0
for flex in flex_file['Player'].unique():
sub_idx = flex_file[flex_file['Player'] == qb_var].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
elif contest_var1 == 'Large Field GPP':
if opto_var1 == "Pivot Optimal":
qbstack_var1 = 2
ministack_var1 = 0
dk_stacks_raw = dk_stacks_raw[dk_stacks_raw['Team'].isin(team_var1)]
dk_stacks_raw = dk_stacks_raw.sort_values(by='Median', ascending=False)
dk_stacks_raw.reset_index(drop=True)
fd_stacks_raw = fd_stacks_raw[fd_stacks_raw['Team'].isin(team_var1)]
dk_stacks_raw = dk_stacks_raw.sort_values(by='Median', ascending=False)
fd_stacks_raw.reset_index(drop=True)
dk_Max_Rank = dk_stacks_raw['Team'].values[0]
fd_Max_Rank = fd_stacks_raw['Team'].values[0]
stack_var1 = fd_Max_Rank
opp_var1 = opp_dict[stack_var1]
qbfile = flex_file[flex_file['Team'] == stack_var1]
qbfile = qbfile[qbfile['Position'] == 'QB']
qbfile = qbfile.reset_index()
qb_var = qbfile['Player'][0]
st.table(qbfile)
#st.write(stack_var1 + ' ' + qb_var)
for qbid in player_ids:
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-qbstack_var1*player_vars[qbid]]) >= 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == stack_var1 and
flex_file['Position'][i] in ('RB'))] +
[0*player_vars[qbid]]) == 0
if flex_file['Position'][qbid] == 'QB':
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['Team'][i] == opp_var1 and
flex_file['Position'][i] in ('WR', 'TE'))] +
[-ministack_var1*player_vars[qbid]]) >= 0
for flex in flex_file['Player'].unique():
sub_idx = flex_file[flex_file['Player'] == qb_var].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var1)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "Var"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 9
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "QB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "RB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "RB"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 2
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "WR"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) <= 4
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "WR"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) >= 3
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "TE"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] == "DST"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
player_count = []
player_trim = []
lineup_list = []
if contest_var1 == 'Cash':
obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_own - .001
elif contest_var1 != 'Cash':
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_proj - .01
if trim_var1 == 1:
total_score += pulp.lpSum([player_vars[idx]*obj_own_max[idx] for idx in flex_file.index]) <= max_own - .001
total_score.solve()
for v in total_score.variables():
if v.varValue > 0:
lineup_list.append(v.name)
df = pd.DataFrame(lineup_list)
df['Names'] = df[0].map(player_match)
df['Cost'] = df['Names'].map(player_sal)
df['Proj'] = df['Names'].map(player_proj)
df['Own'] = df['Names'].map(player_own)
total_cost = sum(df['Cost'])
total_own = sum(df['Own'])
total_proj = sum(df['Proj'])
lineup_raw = pd.DataFrame(lineup_list)
lineup_raw['Names'] = lineup_raw[0].map(player_match)
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
lineup_final = lineup_raw.sort_values(by=['value'])
del lineup_final[lineup_final.columns[0]]
del lineup_final[lineup_final.columns[1]]
lineup_final = lineup_final.reset_index(drop=True)
if site_var1 == 'Draftkings':
line_hold = lineup_final[['Names']]
line_hold['pos'] = line_hold['Names'].map(player_pos)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] == 'QB':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
rbvar = 0
for pname in range(0,len(line_hold)):
if rbvar == 2:
pname = len(line_hold)
elif rbvar < 2:
if line_hold.iat[pname,1] == 'RB':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
rbvar = rbvar + 1
p_used.extend(sorted_lineup)
wrvar = 0
for pname in range(0,len(line_hold)):
if wrvar == 3:
pname = len(line_hold)
elif wrvar < 3:
if line_hold.iat[pname,1] == 'WR':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
wrvar = wrvar + 1
p_used.extend(sorted_lineup)
tevar = 0
for pname in range(0,len(line_hold)):
if tevar == 1:
pname = len(line_hold)
elif tevar < 1:
if line_hold.iat[pname,1] == 'TE':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
tevar = tevar + 1
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] != 'DST':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] == 'DST':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
lineup_final['sorted'] = sorted_lineup
lineup_final = lineup_final.drop(columns=['Names'])
lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
elif site_var1 == 'Fanduel':
line_hold = lineup_final[['Names']]
line_hold['pos'] = line_hold['Names'].map(player_pos)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] == 'QB':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
rbvar = 0
for pname in range(0,len(line_hold)):
if rbvar == 2:
pname = len(line_hold)
elif rbvar < 2:
if line_hold.iat[pname,1] == 'RB':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
rbvar = rbvar + 1
p_used.extend(sorted_lineup)
wrvar = 0
for pname in range(0,len(line_hold)):
if wrvar == 3:
pname = len(line_hold)
elif wrvar < 3:
if line_hold.iat[pname,1] == 'WR':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
wrvar = wrvar + 1
p_used.extend(sorted_lineup)
tevar = 0
for pname in range(0,len(line_hold)):
if tevar == 1:
pname = len(line_hold)
elif tevar < 1:
if line_hold.iat[pname,1] == 'TE':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
tevar = tevar + 1
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] != 'DST':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
for pname in range(0,len(line_hold)):
if line_hold.iat[pname,1] == 'DST':
if line_hold.iat[pname,0] not in p_used:
sorted_lineup.append(line_hold.iat[pname,0])
p_used.extend(sorted_lineup)
lineup_final['sorted'] = sorted_lineup
lineup_final = lineup_final.drop(columns=['Names'])
lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
lineup_test = lineup_final
lineup_final = lineup_final.T
lineup_final['Cost'] = total_cost
lineup_final['Proj'] = total_proj
lineup_final['Own'] = total_own
lineup_test['Team'] = lineup_test['Names'].map(player_team)
lineup_test['Position'] = lineup_test['Names'].map(player_pos)
lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
lineup_test['Own'] = lineup_test['Names'].map(player_own)
lineup_test = lineup_test.set_index('Names')
lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)
lineup_display.append(lineup_test)
with col2:
with st.container():
st.table(lineup_test)
max_proj = total_proj
max_own = total_own
check_list.append(total_proj)
portfolio = pd.concat([portfolio, lineup_final], ignore_index = True)
x += 1
if site_var1 == 'Draftkings':
portfolio.rename(columns={0: "QB", 1: "RB1", 2: "RB2", 3: "WR1", 4: "WR2", 5: "WR3", 6: "TE", 7: "UTIL", 8: "DST"}, inplace = True)
elif site_var1 == 'Fanduel':
portfolio.rename(columns={0: "QB", 1: "RB1", 2: "RB2", 3: "WR1", 4: "WR2", 5: "WR3", 6: "TE", 7: "UTIL", 8: "DST"}, inplace = True)
portfolio = portfolio.dropna()
portfolio = portfolio.reset_index()
portfolio['Lineup_num'] = portfolio['index'] + 1
portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
portfolio = portfolio.set_index('Lineup')
portfolio = portfolio.drop(columns=['index'])
final_outcomes = portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'UTIL', 'DST', 'Cost', 'Proj', 'Own']]
final_outcomes = final_outcomes.set_axis(['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'UTIL', 'DST', 'Cost', 'Proj', 'Own'], axis=1)
final_outcomes_export = pd.DataFrame()
final_outcomes_export['QB'] = final_outcomes['QB']
final_outcomes_export['RB1'] = final_outcomes['RB1']
final_outcomes_export['RB2'] = final_outcomes['RB2']
final_outcomes_export['WR1'] = final_outcomes['WR1']
final_outcomes_export['WR2'] = final_outcomes['WR2']
final_outcomes_export['WR3'] = final_outcomes['WR3']
final_outcomes_export['TE'] = final_outcomes['TE']
final_outcomes_export['UTIL'] = final_outcomes['UTIL']
final_outcomes_export['DST'] = final_outcomes['DST']
final_outcomes_export['Salary'] = final_outcomes['Cost']
final_outcomes_export['Own'] = final_outcomes['Own']
final_outcomes_export['Proj'] = final_outcomes['Proj']
if site_var1 == 'Draftkings':
final_outcomes_export['QB'].replace(dkid_dict, inplace=True)
final_outcomes_export['RB1'].replace(dkid_dict, inplace=True)
final_outcomes_export['RB2'].replace(dkid_dict, inplace=True)
final_outcomes_export['WR1'].replace(dkid_dict, inplace=True)
final_outcomes_export['WR2'].replace(dkid_dict, inplace=True)
final_outcomes_export['WR3'].replace(dkid_dict, inplace=True)
final_outcomes_export['TE'].replace(dkid_dict, inplace=True)
final_outcomes_export['UTIL'].replace(dkid_dict, inplace=True)
final_outcomes_export['DST'].replace(dkid_dict, inplace=True)
elif site_var1 == 'Fanduel':
final_outcomes_export['QB'].replace(fdid_dict, inplace=True)
final_outcomes_export['RB1'].replace(fdid_dict, inplace=True)
final_outcomes_export['RB2'].replace(fdid_dict, inplace=True)
final_outcomes_export['WR1'].replace(fdid_dict, inplace=True)
final_outcomes_export['WR2'].replace(fdid_dict, inplace=True)
final_outcomes_export['WR3'].replace(fdid_dict, inplace=True)
final_outcomes_export['TE'].replace(fdid_dict, inplace=True)
final_outcomes_export['UTIL'].replace(fdid_dict, inplace=True)
final_outcomes_export['DST'].replace(fdid_dict, inplace=True)
player_freq = pd.DataFrame(np.column_stack(np.unique(portfolio.iloc[:,0:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
player_freq['Freq'] = player_freq['Freq'].astype(int)
player_freq['Position'] = player_freq['Player'].map(player_pos)
player_freq['Salary'] = player_freq['Player'].map(player_sal)
player_freq['Proj Own'] = player_freq['Player'].map(player_own) / 100
player_freq['Exposure'] = player_freq['Freq']/(linenum_var1)
player_freq['Team'] = player_freq['Player'].map(player_team)
player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
player_freq = player_freq.set_index('Player')
with optimize_container:
optimize_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with download_container:
download_container = st.empty()
st.download_button(
label="Export Optimals",
data=convert_df_to_csv(final_outcomes_export),
file_name='NFL_optimals_export.csv',
mime='text/csv',
)
with freq_container:
freq_container = st.empty()
st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(expose_format, precision=2), use_container_width = True)
|