File size: 18,929 Bytes
58d7c0c
 
 
 
4b42724
 
58d7c0c
33eecb7
 
1194fb6
33eecb7
1194fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d7c0c
1194fb6
 
4b42724
1194fb6
 
 
58d7c0c
 
 
 
 
 
 
 
 
 
 
 
 
33eecb7
58d7c0c
1194fb6
 
 
 
58d7c0c
33eecb7
 
58d7c0c
 
 
33eecb7
 
58d7c0c
 
 
33eecb7
 
 
 
 
 
 
 
 
 
 
 
 
 
58d7c0c
33eecb7
58d7c0c
 
 
 
 
33eecb7
58d7c0c
33eecb7
58d7c0c
1194fb6
58d7c0c
 
 
 
 
 
 
33eecb7
 
58d7c0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d48fb9
58d7c0c
7048888
33eecb7
 
 
 
 
 
7048888
58d7c0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import numpy as np
import pandas as pd
import streamlit as st
import gspread

st.set_page_config(layout="wide")

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": st.secrets['model_sheets_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
        
        credentials2 = {
          "type": "service_account",
          "project_id": "sheets-api-connect-378620",
          "private_key_id": st.secrets['sheets_api_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
          "client_id": "106625872877651920064",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
        }
     
        NFL_Data = st.secrets['NFL_Data']

        gc = gspread.service_account_from_dict(credentials)
        gc2 = gspread.service_account_from_dict(credentials2)

        return gc, gc2, NFL_Data
    
gcservice_account, gcservice_account2, NFL_Data = init_conn()

wrong_acro = ['WSH', 'AZ']
right_acro = ['WAS', 'ARI']

game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
              'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}

team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
                   '5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}

player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
                   '4x%': '{:.2%}','GPP%': '{:.2%}'}

@st.cache_resource(ttl = 600)
def player_stat_table():
    try:
        sh = gcservice_account.open_by_url(NFL_Data)
    except:
        sh = gcservice_account2.open_by_url(NFL_Data)
    worksheet = sh.worksheet('Player_Projections')
    player_stats = pd.DataFrame(worksheet.get_all_records())
    
    worksheet = sh.worksheet('DK_Stacks')
    load_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = load_display
    dk_stacks_raw = raw_display.sort_values(by='Own', ascending=False)
    
    worksheet = sh.worksheet('FD_Stacks')
    load_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = load_display
    fd_stacks_raw = raw_display.sort_values(by='Own', ascending=False)
    
    worksheet = sh.worksheet('DK_ROO')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    dk_roo_raw = load_display.dropna(subset=['Median'])
    
    worksheet = sh.worksheet('FD_ROO')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    fd_roo_raw = load_display.dropna(subset=['Median'])
    
    worksheet = sh.worksheet('Site_Info')
    site_slates = pd.DataFrame(worksheet.get_all_records())

    return player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates = player_stat_table()
opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"

tab1, tab2 = st.tabs(['Pivot Finder', 'Uploads and Info'])

with tab1:
    col1, col2 = st.columns([1, 5])
    with col1:
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset1'):
              st.cache_data.clear()
              player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates = player_stat_table()
              opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
              t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
        data_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='data_var1')
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
        if site_var1 == 'Draftkings':
              if data_var1 == 'User':
                  raw_baselines = proj_dataframe
              elif data_var1 != 'User':
                  raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == 'Main Slate']
                  raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
        elif site_var1 == 'Fanduel':
              if data_var1 == 'User':
                  raw_baselines = proj_dataframe
              elif data_var1 != 'User':
                  raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate']
                  raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
        player_check = st.selectbox('Select player to create comps', options = dk_roo_raw['Player'].unique(), key='dk_player')
        Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
        Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
        pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
        if pos_var1 == 'Specific Positions':
            pos_var_list = st.multiselect('Which positions would you like to include?', options = raw_baselines['Position'].unique(), key='pos_var_list')
        elif pos_var1 == 'All Positions':
            pos_var_list = raw_baselines.Position.values.tolist()
        split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
        if split_var1 == 'Specific Games':
            team_var1 = st.multiselect('Which teams would you like to include?', options = raw_baselines['Team'].unique(), key='team_var1')
        elif split_var1 == 'Full Slate Run':
            team_var1 = raw_baselines.Team.values.tolist()
        
    with col2:
        hold_container = st.empty()
        if st.button('Simulate appropriate pivots'):
            with hold_container:
                if site_var1 == 'Draftkings':
                          working_roo = raw_baselines
                          working_roo.replace('', 0, inplace=True)
                if site_var1 == 'Fanduel':
                          working_roo = raw_baselines
                          working_roo.replace('', 0, inplace=True)
                          
                          
                own_dict = dict(zip(working_roo.Player, working_roo.Own))
                team_dict = dict(zip(working_roo.Player, working_roo.Team))
                opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
                total_sims = 1000
                
                player_var = working_roo.loc[working_roo['Player'] == player_check]
                player_var = player_var.reset_index()
                
                working_roo = working_roo[working_roo['Position'].isin(pos_var_list)]
                working_roo = working_roo[working_roo['Team'].isin(team_var1)]
                working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
                working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
  
                flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
                flex_file['Floor_raw'] = flex_file['Median'] * .20
                flex_file['Ceiling_raw'] = flex_file['Median'] * 1.9
                flex_file['Floor'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * .33), flex_file['Floor_raw'])
                flex_file['Floor'] = np.where(flex_file['Position'] == 'RB', (flex_file['Median'] * .15), flex_file['Floor_raw'])
                flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * 1.75), flex_file['Ceiling_raw'])
                flex_file['Ceiling'] = np.where(flex_file['Position'] == 'RB', (flex_file['Median'] * 1.85), flex_file['Ceiling_raw'])
                flex_file['STD'] = flex_file['Median'] / 4
                flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
                hold_file = flex_file
                overall_file = flex_file
                salary_file = flex_file
  
                overall_players = overall_file[['Player']]
  
                for x in range(0,total_sims):    
                    salary_file[x] = salary_file['Salary']
  
                salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                salary_file.astype('int').dtypes
  
                salary_file = salary_file.div(1000)
  
                for x in range(0,total_sims):    
                    overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
  
                overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                overall_file.astype('int').dtypes
  
                players_only = hold_file[['Player']]
                raw_lineups_file = players_only
  
                for x in range(0,total_sims):
                    maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
                    raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
                    players_only[x] = raw_lineups_file[x].rank(ascending=False)
  
                players_only=players_only.drop(['Player'], axis=1)
                players_only.astype('int').dtypes
  
                salary_2x_check = (overall_file - (salary_file*2))
                salary_3x_check = (overall_file - (salary_file*3))
                salary_4x_check = (overall_file - (salary_file*4))
  
                players_only['Average_Rank'] = players_only.mean(axis=1)
                players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
                players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
                players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
                players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
                players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
                players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
                players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
  
                players_only['Player'] = hold_file[['Player']]
  
                final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
  
                final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
                final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
                final_Proj['Own'] = final_Proj['Player'].map(own_dict)
                final_Proj['Team'] = final_Proj['Player'].map(team_dict)
                final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
                final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
                final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
                final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
                final_Proj['LevX'] = 0
                final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                final_Proj['CPT_Own'] = final_Proj['Own'] / 4
  
                final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
                final_Proj = final_Proj.set_index('Player')
                final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
  
            with hold_container:
                hold_container = st.empty()
                final_Proj = final_Proj
                st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
  
            st.download_button(
                    label="Export Tables",
                    data=convert_df_to_csv(final_Proj),
                    file_name='NFL_pivot_export.csv',
                    mime='text/csv',
            )
            
with tab2:
    st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
    col1, col2 = st.columns([1, 5])

    with col1:
        proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
    
        if proj_file is not None:
                  try:
                            proj_dataframe = pd.read_csv(proj_file)
                  except:
                            proj_dataframe = pd.read_excel(proj_file)
    with col2:
        if proj_file is not None:  
                  st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)