File size: 18,668 Bytes
7dc696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70daf01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dc696f
70daf01
7dc696f
 
 
70daf01
7dc696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70daf01
7dc696f
 
 
 
 
70daf01
 
 
 
 
 
 
 
 
 
 
 
 
7dc696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70daf01
 
 
 
 
7dc696f
 
 
 
 
70daf01
 
 
 
7dc696f
70daf01
 
7dc696f
 
70daf01
7dc696f
 
70daf01
 
 
7dc696f
70daf01
 
 
 
 
 
 
 
 
7dc696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gspread
import random
import gc

tab1, tab2 = st.tabs(['Uploads', 'Manage Portfolio'])

with tab1:
    with st.container():          
          col1, col2 = st.columns([3, 3])
          
          with col1:
                    proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')

                    if proj_file is not None:
                              try:
                                        proj_dataframe = pd.read_csv(proj_file)
                                        proj_dataframe = proj_dataframe.dropna(subset='Median')
                                        proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
                                        try:
                                            proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
                                        except:
                                            pass
                                        
                              except:
                                        proj_dataframe = pd.read_excel(proj_file)
                                        proj_dataframe = proj_dataframe.dropna(subset='Median')
                                        proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
                                        try:
                                            proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
                                        except:
                                            pass
                              st.table(proj_dataframe.head(10))
                              player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
                              player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
                              player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
                              
          with col2:
                    portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')

                    if portfolio_file is not None:
                            try:
                                      portfolio_dataframe = pd.read_csv(portfolio_file)
                                      
                            except:
                                      portfolio_dataframe = pd.read_excel(portfolio_file)
                              
                            portfolio_dataframe.columns=["QB", "RB1", "RB2", "WR1", "WR2", "WR3", "TE", "FLEX", "DST"]
                            split_portfolio = portfolio_dataframe
                            split_portfolio[['QB', 'QB_ID']] = split_portfolio.QB.str.split("(", n=1, expand = True)
                            split_portfolio[['RB1', 'RB1_ID']] = split_portfolio.RB1.str.split("(", n=1, expand = True)
                            split_portfolio[['RB2', 'RB2_ID']] = split_portfolio.RB2.str.split("(", n=1, expand = True)
                            split_portfolio[['WR1', 'WR1_ID']] = split_portfolio.WR1.str.split("(", n=1, expand = True)
                            split_portfolio[['WR2', 'WR2_ID']] = split_portfolio.WR2.str.split("(", n=1, expand = True)
                            split_portfolio[['WR3', 'WR3_ID']] = split_portfolio.WR3.str.split("(", n=1, expand = True)
                            split_portfolio[['TE', 'TE_ID']] = split_portfolio.TE.str.split("(", n=1, expand = True)
                            split_portfolio[['FLEX', 'FLEX_ID']] = split_portfolio.FLEX.str.split("(", n=1, expand = True)
                            split_portfolio[['DST', 'DST_ID']] = split_portfolio.DST.str.split("(", n=1, expand = True)
  
                            split_portfolio['QB'] = split_portfolio['QB'].str.strip()
                            split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
                            split_portfolio['RB2'] = split_portfolio['RB2'].str.strip()
                            split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
                            split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
                            split_portfolio['WR3'] = split_portfolio['WR3'].str.strip()
                            split_portfolio['TE'] = split_portfolio['TE'].str.strip()
                            split_portfolio['FLEX'] = split_portfolio['FLEX'].str.strip()
                            split_portfolio['DST'] = split_portfolio['DST'].str.strip()
                            
                            st.table(split_portfolio.head(10))
  
                            split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
                                      split_portfolio['RB1'].map(player_salary_dict),
                                      split_portfolio['RB2'].map(player_salary_dict),
                                      split_portfolio['WR1'].map(player_salary_dict),
                                      split_portfolio['WR2'].map(player_salary_dict),
                                      split_portfolio['WR3'].map(player_salary_dict),
                                      split_portfolio['TE'].map(player_salary_dict),
                                      split_portfolio['FLEX'].map(player_salary_dict),
                                      split_portfolio['DST'].map(player_salary_dict)])
                            
                            split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
                                      split_portfolio['RB1'].map(player_proj_dict),
                                      split_portfolio['RB2'].map(player_proj_dict),
                                      split_portfolio['WR1'].map(player_proj_dict),
                                      split_portfolio['WR2'].map(player_proj_dict),
                                      split_portfolio['WR3'].map(player_proj_dict),
                                      split_portfolio['TE'].map(player_proj_dict),
                                      split_portfolio['FLEX'].map(player_proj_dict),
                                      split_portfolio['DST'].map(player_proj_dict)])
                            
                            split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
                                      split_portfolio['RB1'].map(player_own_dict),
                                      split_portfolio['RB2'].map(player_own_dict),
                                      split_portfolio['WR1'].map(player_own_dict),
                                      split_portfolio['WR2'].map(player_own_dict),
                                      split_portfolio['WR3'].map(player_own_dict),
                                      split_portfolio['TE'].map(player_own_dict),
                                      split_portfolio['FLEX'].map(player_own_dict),
                                      split_portfolio['DST'].map(player_own_dict)])
                                 
                            display_portfolio = split_portfolio[["QB", "RB1", "RB2", "WR1", "WR2", "WR3", "TE", "FLEX", "DST", 'Salary', 'Projection', 'Ownership']]
                            st.session_state.display_portfolio = display_portfolio
                            hold_portfolio = display_portfolio.sort_values(by='Projection', ascending=False)
                            
                            st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:9].values, return_counts=True)),
                                                        columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
                            st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
                            st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
                            
                            gc.collect() 
                            
with tab2:
    with st.container():
        hold_container = st.empty()
        col1, col2, col3 = st.columns([3, 3, 3])
        with col1:
            if st.button("Load/Reset Data", key='reset1'):
                for key in st.session_state.keys():
                      del st.session_state[key]
                display_portfolio = hold_portfolio
                st.session_state.display_portfolio = display_portfolio
                st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
                st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
                st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
        with col2:
            if st.button("Trim Lineups", key='trim1'):
                max_proj = 10000
                max_own = display_portfolio['Ownership'].iloc[0]
                x = 0
                for index, row in display_portfolio.iterrows():
                    if row['Ownership'] > max_own:
                        display_portfolio.drop(index, inplace=True)
                    elif row['Ownership'] <= max_own:
                        max_own = row['Ownership']
                st.session_state.display_portfolio = display_portfolio
                st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
                                            columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
                st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
                st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
        with col3:
            player_check = st.selectbox('Select player to create comps', options = proj_dataframe['Player'].unique(), key='dk_player')
            if st.button('Simulate appropriate pivots'):
                with hold_container:
                    
                    working_roo = proj_dataframe
                    own_dict = dict(zip(working_roo.Player, working_roo.Own))
                    team_dict = dict(zip(working_roo.Player, working_roo.Team))
                    opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
                    total_sims = 1000
                    
                    player_var = working_roo.loc[working_roo['Player'] == player_check]
                    player_var = player_var.reset_index()
                    
                    working_roo = working_roo[working_roo['Position'].isin(pos_var_list)]
                    working_roo = working_roo[working_roo['Team'].isin(team_var1)]
                    working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
                    working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
      
                    flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
                    flex_file['Floor_raw'] = flex_file['Median'] * .20
                    flex_file['Ceiling_raw'] = flex_file['Median'] * 1.9
                    flex_file['Floor'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * .33), flex_file['Floor_raw'])
                    flex_file['Floor'] = np.where(flex_file['Position'] == 'RB', (flex_file['Median'] * .15), flex_file['Floor_raw'])
                    flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * 1.75), flex_file['Ceiling_raw'])
                    flex_file['Ceiling'] = np.where(flex_file['Position'] == 'RB', (flex_file['Median'] * 1.85), flex_file['Ceiling_raw'])
                    flex_file['STD'] = flex_file['Median'] / 4
                    flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
                    hold_file = flex_file
                    overall_file = flex_file
                    salary_file = flex_file
      
                    overall_players = overall_file[['Player']]
      
                    for x in range(0,total_sims):    
                        salary_file[x] = salary_file['Salary']
      
                    salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                    salary_file.astype('int').dtypes
      
                    salary_file = salary_file.div(1000)
      
                    for x in range(0,total_sims):    
                        overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
      
                    overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
                    overall_file.astype('int').dtypes
      
                    players_only = hold_file[['Player']]
                    raw_lineups_file = players_only
      
                    for x in range(0,total_sims):
                        maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
                        raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
                        players_only[x] = raw_lineups_file[x].rank(ascending=False)
      
                    players_only=players_only.drop(['Player'], axis=1)
                    players_only.astype('int').dtypes
      
                    salary_2x_check = (overall_file - (salary_file*2))
                    salary_3x_check = (overall_file - (salary_file*3))
                    salary_4x_check = (overall_file - (salary_file*4))
      
                    players_only['Average_Rank'] = players_only.mean(axis=1)
                    players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
                    players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
                    players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
                    players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
                    players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
                    players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
                    players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
      
                    players_only['Player'] = hold_file[['Player']]
      
                    final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
      
                    final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
                    final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
                    final_Proj['Own'] = final_Proj['Player'].map(own_dict)
                    final_Proj['Team'] = final_Proj['Player'].map(team_dict)
                    final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
                    final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
                    final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
                    final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
                    final_Proj['LevX'] = 0
                    final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                    final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                    final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                    final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
                    final_Proj['CPT_Own'] = final_Proj['Own'] / 4
      
                    final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
                    final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
                    final_Proj['Player_swap'] = player_check
                    st.session_state.final_Proj = final_Proj
                    
                    hold_container = st.empty()
    with st.container():
        col1, col2 = st.columns([7, 2])         
        with col1:
                 if 'display_portfolio' in st.session_state:
                     st.dataframe(st.session_state.display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
            
            # with display_container:
            #      display_container = st.empty()
            #      if 'final_Proj' in st.session_state:
            #          st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
        with col2:
                 if 'player_freq' in st.session_state:
                     st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)