Multichem commited on
Commit
214a466
·
1 Parent(s): 0cf815a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -27
app.py CHANGED
@@ -433,31 +433,6 @@ with tab3:
433
  combo_file = pd.concat([cpt_proj, flex_proj], ignore_index=True)
434
 
435
  with col2:
436
-
437
- with st.container():
438
- st.dataframe(display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
439
- st.download_button(
440
- label="Export Projections",
441
- data=convert_df_to_csv(export_baselines),
442
- file_name='NFL_proj_export.csv',
443
- mime='text/csv',
444
- )
445
-
446
- with st.container():
447
- if 'portfolio' in st.session_state:
448
- st.dataframe(st.session_state.portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
449
- if 'final_outcomes_export' in st.session_state:
450
- st.download_button(
451
- label="Export Tables",
452
- data=convert_df_to_csv(st.session_state.final_outcomes_export),
453
- file_name='MLB_optimals_export.csv',
454
- mime='text/csv',
455
- )
456
-
457
- with st.container():
458
- if 'player_freq' in st.session_state:
459
- st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(expose_format, precision=2), use_container_width = True)
460
-
461
  if st.button('Optimize'):
462
  for key in st.session_state.keys():
463
  del st.session_state[key]
@@ -466,6 +441,8 @@ with tab3:
466
  total_proj = 0
467
  total_own = 0
468
  optimize_container = st.empty()
 
 
469
  lineup_display = []
470
  check_list = []
471
  lineups = []
@@ -473,7 +450,7 @@ with tab3:
473
  x = 1
474
 
475
  with st.spinner('Wait for it...'):
476
- with st.container():
477
 
478
  while x <= linenum_var1:
479
  sorted_lineup = []
@@ -631,6 +608,7 @@ with tab3:
631
  st.session_state.portfolio = portfolio.drop_duplicates()
632
 
633
  final_outcomes = portfolio
 
634
 
635
  player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.portfolio.iloc[:,0:5].values, return_counts=True)),
636
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
@@ -710,4 +688,20 @@ with tab3:
710
 
711
  st.session_state.final_outcomes_export = final_outcomes_export.copy()
712
 
713
- st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433
  combo_file = pd.concat([cpt_proj, flex_proj], ignore_index=True)
434
 
435
  with col2:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436
  if st.button('Optimize'):
437
  for key in st.session_state.keys():
438
  del st.session_state[key]
 
441
  total_proj = 0
442
  total_own = 0
443
  optimize_container = st.empty()
444
+ download_container = st.empty()
445
+ freq_container = st.empty()
446
  lineup_display = []
447
  check_list = []
448
  lineups = []
 
450
  x = 1
451
 
452
  with st.spinner('Wait for it...'):
453
+ with optimize_container:
454
 
455
  while x <= linenum_var1:
456
  sorted_lineup = []
 
608
  st.session_state.portfolio = portfolio.drop_duplicates()
609
 
610
  final_outcomes = portfolio
611
+ st.session_state.final_outcomes = portfolio
612
 
613
  player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.portfolio.iloc[:,0:5].values, return_counts=True)),
614
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
 
688
 
689
  st.session_state.final_outcomes_export = final_outcomes_export.copy()
690
 
691
+ st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
692
+
693
+ with optimize_container:
694
+ optimize_container = st.empty()
695
+ st.dataframe(st.session_state.final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
696
+ with download_container:
697
+ download_container = st.empty()
698
+ st.download_button(
699
+ label="Export Optimals",
700
+ data=convert_df_to_csv(st.session_state.final_outcomes_export),
701
+ file_name='NFL_optimals_export.csv',
702
+ mime='text/csv',
703
+ )
704
+ with freq_container:
705
+ freq_container = st.empty()
706
+ st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(expose_format, precision=2), use_container_width = True)
707
+