File size: 17,478 Bytes
c569ef8
 
45d7395
 
 
c569ef8
45d7395
 
c569ef8
 
 
 
 
 
 
02f2ac3
c569ef8
 
 
 
 
 
 
 
 
02f2ac3
c569ef8
 
 
41b51c7
c569ef8
41b51c7
45d7395
 
 
 
 
 
 
c569ef8
 
45d7395
 
 
c569ef8
 
45d7395
 
c569ef8
 
45d7395
 
 
 
c569ef8
 
45d7395
 
 
 
c569ef8
45d7395
c569ef8
45d7395
 
 
 
 
c569ef8
45d7395
 
 
6c03193
45d7395
4301f28
45d7395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4301f28
45d7395
 
 
 
 
 
c569ef8
45d7395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import gspread
import streamlit as st
from itertools import combinations

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": st.secrets['model_sheets_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
     
        NFL_Data = st.secrets["NFL_data"]

        gc_con = gspread.service_account_from_dict(credentials, scope)

        return gc_con, NFL_Data
    
gc, all_dk_player_projections = init_conn()

game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
              'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}

player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
                   '4x%': '{:.2%}','GPP%': '{:.2%}'}

@st.cache_data(ttl = 599)
def init_baselines():
    sh = gc.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('Site_Info')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    site_slates = raw_display
    
    worksheet = sh.worksheet('Player_Projections')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    player_stats = raw_display
    
    worksheet = sh.worksheet('DK_ROO')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    raw_display = load_display.dropna(subset=['Median'])
    dk_roo_raw = raw_display
    
    worksheet = sh.worksheet('FD_ROO')
    load_display = pd.DataFrame(worksheet.get_all_records())
    load_display.replace('', np.nan, inplace=True)
    raw_display = load_display.dropna(subset=['Median'])
    fd_roo_raw = raw_display

    return site_slates, player_stats, dk_roo_raw, fd_roo_raw

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

site_slates, player_stats, dk_roo_raw, fd_roo_raw = init_baselines()
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
col1, col2 = st.columns([1, 5])

tab1, tab2 = st.tabs(['Stack Finder', 'Uploads'])

with tab2:
    st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
    col1, col2 = st.columns([1, 5])

    with col1:
        proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
    
        if proj_file is not None:
                  try:
                            proj_dataframe = pd.read_csv(proj_file)
                  except:
                            proj_dataframe = pd.read_excel(proj_file)
    with col2:
        if proj_file is not None:  
                  st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
        
with tab1:
    col1, col2 = st.columns([1, 5])

    with col1:
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset1'):
              st.cache_data.clear()
              site_slates, player_stats, dk_roo_raw, fd_roo_raw = init_baselines()
              t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
        slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate', 'User'), key='slate_var1')
        site_var1 = st.radio("What site are you playing?", ('Draftkings', 'Fanduel'), key='site_var1')
        
        if site_var1 == 'Draftkings':
            if slate_var1 == 'User':
                raw_baselines = proj_dataframe
                qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB']
            elif slate_var1 != 'User':
                raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var1)]
                raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
                qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB']
        elif site_var1 == 'Fanduel':
            if slate_var1 == 'User':
                raw_baselines = proj_dataframe
                qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB']
            elif slate_var1 != 'User':
                raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var1)]
                raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
                qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB']
        split_var1 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('Full Slate Run', 'Specific Teams'), key='split_var1')
        if split_var1 == 'Specific Teams':
            team_var1 = st.multiselect('Which teams would you like to include in the analysis?', options = raw_baselines['Team'].unique(), key='team_var1')
        elif split_var1 == 'Full Slate Run':
            team_var1 = raw_baselines.Team.unique().tolist()
        pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
        if pos_split1 == 'Specific Positions':
            pos_var1 = st.multiselect('What Positions would you like to view?', options = ['QB', 'WR', 'TE'])
        elif pos_split1 == 'All Positions':
            pos_var1 = 'All'
        if site_var1 == 'Draftkings':
            max_sal1 = st.number_input('Max Salary', min_value = 5000, max_value = 50000, value = 35000, step = 100, key='max_sal1')
        elif site_var1 == 'Fanduel':
            max_sal1 = st.number_input('Max Salary', min_value = 5000, max_value = 35000, value = 25000, step = 100, key='max_sal1')
        size_var1 = st.selectbox('What size of stacks are you analyzing?', options = ['QB+1', 'QB+2'])
        if size_var1 == 'QB+1':
            stack_size = 2
        elif size_var1 == 'QB+2':
            stack_size = 3
    
        team_dict = dict(zip(raw_baselines.Player, raw_baselines.Team))
        proj_dict = dict(zip(raw_baselines.Player, raw_baselines.Median))
        own_dict = dict(zip(raw_baselines.Player, raw_baselines.Own))
        cost_dict = dict(zip(raw_baselines.Player, raw_baselines.Salary))
        qb_dict = dict(zip(qb_lookup.Team, qb_lookup.Player))
    
    with col2:
        stack_hold_container = st.empty()
        if st.button('Run stack analysis'):
            comb_list = []
            if pos_split1 == 'All Positions':
                raw_baselines = raw_baselines
            elif pos_split1 != 'All Positions':
                raw_baselines = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var1))]
    
            for cur_team in team_var1:
                working_baselines = raw_baselines
                working_baselines = working_baselines[working_baselines['Team'] == cur_team]
                working_baselines = working_baselines[working_baselines['Position'] != 'RB']
                working_baselines = working_baselines[working_baselines['Position'] != 'DST']
                qb_var = qb_dict[cur_team]
                order_list = working_baselines['Player']
    
                comb = combinations(order_list, stack_size)
    
                for i in list(comb):
                    if qb_var in i:
                        comb_list.append(i)
    
            comb_DF = pd.DataFrame(comb_list)
            
            if stack_size == 2:
                comb_DF['Team'] = comb_DF[0].map(team_dict)
    
                comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
                        comb_DF[1].map(proj_dict)])
    
                comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
                        comb_DF[1].map(cost_dict)])
    
                comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
                        comb_DF[1].map(own_dict)])
            elif stack_size == 3:
                comb_DF['Team'] = comb_DF[0].map(team_dict)
    
                comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
                        comb_DF[1].map(proj_dict),
                        comb_DF[2].map(proj_dict)])
    
                comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
                        comb_DF[1].map(cost_dict),
                        comb_DF[2].map(cost_dict)])
    
                comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
                        comb_DF[1].map(own_dict),
                        comb_DF[2].map(own_dict)])
            elif stack_size == 4:
                comb_DF['Team'] = comb_DF[0].map(team_dict)
    
                comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
                        comb_DF[1].map(proj_dict),
                        comb_DF[2].map(proj_dict),
                        comb_DF[3].map(proj_dict)])
    
                comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
                        comb_DF[1].map(cost_dict),
                        comb_DF[2].map(cost_dict),
                        comb_DF[3].map(cost_dict)])
    
                comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
                        comb_DF[1].map(own_dict),
                        comb_DF[2].map(own_dict),
                        comb_DF[3].map(own_dict)])
            elif stack_size == 5:
                comb_DF['Team'] = comb_DF[0].map(team_dict)
    
                comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
                        comb_DF[1].map(proj_dict),
                        comb_DF[2].map(proj_dict),
                        comb_DF[3].map(proj_dict),
                        comb_DF[4].map(proj_dict)])
    
                comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
                        comb_DF[1].map(cost_dict),
                        comb_DF[2].map(cost_dict),
                        comb_DF[3].map(cost_dict),
                        comb_DF[4].map(cost_dict)])
    
                comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
                        comb_DF[1].map(own_dict),
                        comb_DF[2].map(own_dict),
                        comb_DF[3].map(own_dict),
                        comb_DF[4].map(own_dict)])
    
            comb_DF = comb_DF.sort_values(by='Proj', ascending=False)
            comb_DF = comb_DF.loc[comb_DF['Salary'] <= max_sal1]
    
            cut_var = 0
            
            if stack_size == 2:
                while cut_var <= int(len(comb_DF)):
                    try:
                        if int(cut_var) == 0:
                            cur_proj = float(comb_DF.iat[cut_var, 3])
                            cur_own = float(comb_DF.iat[cut_var, 5])
                        elif int(cut_var) >= 1:
                            check_own = float(comb_DF.iat[cut_var, 5])
                            if check_own > cur_own:
                                comb_DF = comb_DF.drop([cut_var])
                                cur_own = cur_own
                                cut_var = cut_var - 1
                                comb_DF = comb_DF.reset_index()
                                comb_DF = comb_DF.drop(['index'], axis=1)
                            elif check_own <= cur_own:
                                cur_own = float(comb_DF.iat[cut_var, 5])
                                cut_var = cut_var
                        cut_var += 1
                    except:
                        cut_var += 1
            elif stack_size == 3:
                while cut_var <= int(len(comb_DF)):
                    try:
                        if int(cut_var) == 0:
                            cur_proj = float(comb_DF.iat[cut_var,4])
                            cur_own = float(comb_DF.iat[cut_var,6])
                        elif int(cut_var) >= 1:
                            check_own = float(comb_DF.iat[cut_var,6])
                            if check_own > cur_own:
                                comb_DF = comb_DF.drop([cut_var])
                                cur_own = cur_own
                                cut_var = cut_var - 1
                                comb_DF = comb_DF.reset_index()
                                comb_DF = comb_DF.drop(['index'], axis=1)
                            elif check_own <= cur_own:
                                cur_own = float(comb_DF.iat[cut_var,6])
                                cut_var = cut_var
                        cut_var += 1
                    except:
                        cut_var += 1
            elif stack_size == 4:
                while cut_var <= int(len(comb_DF)):
                    try:
                        if int(cut_var) == 0:
                            cur_proj = float(comb_DF.iat[cut_var,5])
                            cur_own = float(comb_DF.iat[cut_var,7])
                        elif int(cut_var) >= 1:
                            check_own = float(comb_DF.iat[cut_var,7])
                            if check_own > cur_own:
                                comb_DF = comb_DF.drop([cut_var])
                                cur_own = cur_own
                                cut_var = cut_var - 1
                                comb_DF = comb_DF.reset_index()
                                comb_DF = comb_DF.drop(['index'], axis=1)
                            elif check_own <= cur_own:
                                cur_own = float(comb_DF.iat[cut_var,7])
                                cut_var = cut_var
                        cut_var += 1
                    except:
                        cut_var += 1
            elif stack_size == 5:
                while cut_var <= int(len(comb_DF)):
                    try:
                        if int(cut_var) == 0:
                            cur_proj = float(comb_DF.iat[cut_var,6])
                            cur_own = float(comb_DF.iat[cut_var,8])
                        elif int(cut_var) >= 1:
                            check_own = float(comb_DF.iat[cut_var,8])
                            if check_own > cur_own:
                                comb_DF = comb_DF.drop([cut_var])
                                cur_own = cur_own
                                cut_var = cut_var - 1
                                comb_DF = comb_DF.reset_index()
                                comb_DF = comb_DF.drop(['index'], axis=1)
                            elif check_own <= cur_own:
                                cur_own = float(comb_DF.iat[cut_var,8])
                                cut_var = cut_var
                        cut_var += 1
                    except:
                        cut_var += 1
    
            with stack_hold_container:
                stack_hold_container = st.empty()
                st.dataframe(comb_DF.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
            st.download_button(
                    label="Export Tables",
                    data=convert_df_to_csv(comb_DF),
                    file_name='NFL_Stack_Options_export.csv',
                    mime='text/csv',
            )