Spaces:
Sleeping
Sleeping
import streamlit as st | |
st.set_page_config(layout="wide") | |
import numpy as np | |
import pandas as pd | |
import gspread | |
import streamlit as st | |
from itertools import combinations | |
def init_conn(): | |
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] | |
credentials = { | |
"type": "service_account", | |
"project_id": "model-sheets-connect", | |
"private_key_id": st.secrets['model_sheets_connect_pk'], | |
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n", | |
"client_email": "[email protected]", | |
"client_id": "100369174533302798535", | |
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | |
"token_uri": "https://oauth2.googleapis.com/token", | |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", | |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com" | |
} | |
NFL_Data = st.secrets["NFL_data"] | |
gc_con = gspread.service_account_from_dict(credentials, scope) | |
return gc_con, NFL_Data | |
gc, all_dk_player_projections = init_conn() | |
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}', | |
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'} | |
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}', | |
'4x%': '{:.2%}','GPP%': '{:.2%}'} | |
def init_baselines(): | |
sh = gc.open_by_url(all_dk_player_projections) | |
worksheet = sh.worksheet('Site_Info') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
site_slates = raw_display | |
worksheet = sh.worksheet('Player_Projections') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
player_stats = raw_display | |
worksheet = sh.worksheet('DK_ROO') | |
load_display = pd.DataFrame(worksheet.get_all_records()) | |
load_display.replace('', np.nan, inplace=True) | |
raw_display = load_display.dropna(subset=['Median']) | |
dk_roo_raw = raw_display | |
worksheet = sh.worksheet('FD_ROO') | |
load_display = pd.DataFrame(worksheet.get_all_records()) | |
load_display.replace('', np.nan, inplace=True) | |
raw_display = load_display.dropna(subset=['Median']) | |
fd_roo_raw = raw_display | |
return site_slates, player_stats, dk_roo_raw, fd_roo_raw | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
site_slates, player_stats, dk_roo_raw, fd_roo_raw = init_baselines() | |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST" | |
col1, col2 = st.columns([1, 5]) | |
tab1, tab2 = st.tabs(['Stack Finder', 'Uploads']) | |
with tab2: | |
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.") | |
col1, col2 = st.columns([1, 5]) | |
with col1: | |
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader') | |
if proj_file is not None: | |
try: | |
proj_dataframe = pd.read_csv(proj_file) | |
except: | |
proj_dataframe = pd.read_excel(proj_file) | |
with col2: | |
if proj_file is not None: | |
st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
with tab1: | |
col1, col2 = st.columns([1, 5]) | |
with col1: | |
st.info(t_stamp) | |
if st.button("Load/Reset Data", key='reset1'): | |
st.cache_data.clear() | |
site_slates, player_stats, dk_roo_raw, fd_roo_raw = init_baselines() | |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST" | |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate', 'User'), key='slate_var1') | |
site_var1 = st.radio("What site are you playing?", ('Draftkings', 'Fanduel'), key='site_var1') | |
if site_var1 == 'Draftkings': | |
if slate_var1 == 'User': | |
raw_baselines = proj_dataframe | |
qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB'] | |
elif slate_var1 != 'User': | |
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var1)] | |
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall'] | |
qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB'] | |
elif site_var1 == 'Fanduel': | |
if slate_var1 == 'User': | |
raw_baselines = proj_dataframe | |
qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB'] | |
elif slate_var1 != 'User': | |
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var1)] | |
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall'] | |
qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB'] | |
split_var1 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('Full Slate Run', 'Specific Teams'), key='split_var1') | |
if split_var1 == 'Specific Teams': | |
team_var1 = st.multiselect('Which teams would you like to include in the analysis?', options = raw_baselines['Team'].unique(), key='team_var1') | |
elif split_var1 == 'Full Slate Run': | |
team_var1 = raw_baselines.Team.unique().tolist() | |
pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1') | |
if pos_split1 == 'Specific Positions': | |
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['QB', 'WR', 'TE']) | |
elif pos_split1 == 'All Positions': | |
pos_var1 = 'All' | |
if site_var1 == 'Draftkings': | |
max_sal1 = st.number_input('Max Salary', min_value = 5000, max_value = 50000, value = 35000, step = 100, key='max_sal1') | |
elif site_var1 == 'Fanduel': | |
max_sal1 = st.number_input('Max Salary', min_value = 5000, max_value = 35000, value = 25000, step = 100, key='max_sal1') | |
size_var1 = st.selectbox('What size of stacks are you analyzing?', options = ['QB+1', 'QB+2']) | |
if size_var1 == 'QB+1': | |
stack_size = 2 | |
elif size_var1 == 'QB+2': | |
stack_size = 3 | |
team_dict = dict(zip(raw_baselines.Player, raw_baselines.Team)) | |
proj_dict = dict(zip(raw_baselines.Player, raw_baselines.Median)) | |
own_dict = dict(zip(raw_baselines.Player, raw_baselines.Own)) | |
cost_dict = dict(zip(raw_baselines.Player, raw_baselines.Salary)) | |
qb_dict = dict(zip(qb_lookup.Team, qb_lookup.Player)) | |
with col2: | |
stack_hold_container = st.empty() | |
if st.button('Run stack analysis'): | |
comb_list = [] | |
if pos_split1 == 'All Positions': | |
raw_baselines = raw_baselines | |
elif pos_split1 != 'All Positions': | |
raw_baselines = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var1))] | |
for cur_team in team_var1: | |
working_baselines = raw_baselines | |
working_baselines = working_baselines[working_baselines['Team'] == cur_team] | |
working_baselines = working_baselines[working_baselines['Position'] != 'RB'] | |
working_baselines = working_baselines[working_baselines['Position'] != 'DST'] | |
qb_var = qb_dict[cur_team] | |
order_list = working_baselines['Player'] | |
comb = combinations(order_list, stack_size) | |
for i in list(comb): | |
if qb_var in i: | |
comb_list.append(i) | |
comb_DF = pd.DataFrame(comb_list) | |
if stack_size == 2: | |
comb_DF['Team'] = comb_DF[0].map(team_dict) | |
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict), | |
comb_DF[1].map(proj_dict)]) | |
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict), | |
comb_DF[1].map(cost_dict)]) | |
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict), | |
comb_DF[1].map(own_dict)]) | |
elif stack_size == 3: | |
comb_DF['Team'] = comb_DF[0].map(team_dict) | |
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict), | |
comb_DF[1].map(proj_dict), | |
comb_DF[2].map(proj_dict)]) | |
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict), | |
comb_DF[1].map(cost_dict), | |
comb_DF[2].map(cost_dict)]) | |
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict), | |
comb_DF[1].map(own_dict), | |
comb_DF[2].map(own_dict)]) | |
elif stack_size == 4: | |
comb_DF['Team'] = comb_DF[0].map(team_dict) | |
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict), | |
comb_DF[1].map(proj_dict), | |
comb_DF[2].map(proj_dict), | |
comb_DF[3].map(proj_dict)]) | |
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict), | |
comb_DF[1].map(cost_dict), | |
comb_DF[2].map(cost_dict), | |
comb_DF[3].map(cost_dict)]) | |
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict), | |
comb_DF[1].map(own_dict), | |
comb_DF[2].map(own_dict), | |
comb_DF[3].map(own_dict)]) | |
elif stack_size == 5: | |
comb_DF['Team'] = comb_DF[0].map(team_dict) | |
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict), | |
comb_DF[1].map(proj_dict), | |
comb_DF[2].map(proj_dict), | |
comb_DF[3].map(proj_dict), | |
comb_DF[4].map(proj_dict)]) | |
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict), | |
comb_DF[1].map(cost_dict), | |
comb_DF[2].map(cost_dict), | |
comb_DF[3].map(cost_dict), | |
comb_DF[4].map(cost_dict)]) | |
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict), | |
comb_DF[1].map(own_dict), | |
comb_DF[2].map(own_dict), | |
comb_DF[3].map(own_dict), | |
comb_DF[4].map(own_dict)]) | |
comb_DF = comb_DF.sort_values(by='Proj', ascending=False) | |
comb_DF = comb_DF.loc[comb_DF['Salary'] <= max_sal1] | |
cut_var = 0 | |
if stack_size == 2: | |
while cut_var <= int(len(comb_DF)): | |
try: | |
if int(cut_var) == 0: | |
cur_proj = float(comb_DF.iat[cut_var, 3]) | |
cur_own = float(comb_DF.iat[cut_var, 5]) | |
elif int(cut_var) >= 1: | |
check_own = float(comb_DF.iat[cut_var, 5]) | |
if check_own > cur_own: | |
comb_DF = comb_DF.drop([cut_var]) | |
cur_own = cur_own | |
cut_var = cut_var - 1 | |
comb_DF = comb_DF.reset_index() | |
comb_DF = comb_DF.drop(['index'], axis=1) | |
elif check_own <= cur_own: | |
cur_own = float(comb_DF.iat[cut_var, 5]) | |
cut_var = cut_var | |
cut_var += 1 | |
except: | |
cut_var += 1 | |
elif stack_size == 3: | |
while cut_var <= int(len(comb_DF)): | |
try: | |
if int(cut_var) == 0: | |
cur_proj = float(comb_DF.iat[cut_var,4]) | |
cur_own = float(comb_DF.iat[cut_var,6]) | |
elif int(cut_var) >= 1: | |
check_own = float(comb_DF.iat[cut_var,6]) | |
if check_own > cur_own: | |
comb_DF = comb_DF.drop([cut_var]) | |
cur_own = cur_own | |
cut_var = cut_var - 1 | |
comb_DF = comb_DF.reset_index() | |
comb_DF = comb_DF.drop(['index'], axis=1) | |
elif check_own <= cur_own: | |
cur_own = float(comb_DF.iat[cut_var,6]) | |
cut_var = cut_var | |
cut_var += 1 | |
except: | |
cut_var += 1 | |
elif stack_size == 4: | |
while cut_var <= int(len(comb_DF)): | |
try: | |
if int(cut_var) == 0: | |
cur_proj = float(comb_DF.iat[cut_var,5]) | |
cur_own = float(comb_DF.iat[cut_var,7]) | |
elif int(cut_var) >= 1: | |
check_own = float(comb_DF.iat[cut_var,7]) | |
if check_own > cur_own: | |
comb_DF = comb_DF.drop([cut_var]) | |
cur_own = cur_own | |
cut_var = cut_var - 1 | |
comb_DF = comb_DF.reset_index() | |
comb_DF = comb_DF.drop(['index'], axis=1) | |
elif check_own <= cur_own: | |
cur_own = float(comb_DF.iat[cut_var,7]) | |
cut_var = cut_var | |
cut_var += 1 | |
except: | |
cut_var += 1 | |
elif stack_size == 5: | |
while cut_var <= int(len(comb_DF)): | |
try: | |
if int(cut_var) == 0: | |
cur_proj = float(comb_DF.iat[cut_var,6]) | |
cur_own = float(comb_DF.iat[cut_var,8]) | |
elif int(cut_var) >= 1: | |
check_own = float(comb_DF.iat[cut_var,8]) | |
if check_own > cur_own: | |
comb_DF = comb_DF.drop([cut_var]) | |
cur_own = cur_own | |
cut_var = cut_var - 1 | |
comb_DF = comb_DF.reset_index() | |
comb_DF = comb_DF.drop(['index'], axis=1) | |
elif check_own <= cur_own: | |
cur_own = float(comb_DF.iat[cut_var,8]) | |
cut_var = cut_var | |
cut_var += 1 | |
except: | |
cut_var += 1 | |
with stack_hold_container: | |
stack_hold_container = st.empty() | |
st.dataframe(comb_DF.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Tables", | |
data=convert_df_to_csv(comb_DF), | |
file_name='NFL_Stack_Options_export.csv', | |
mime='text/csv', | |
) |