James McCool
Update tab styling colors in app.py for improved visual consistency
06cad0a
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import pulp
import numpy as np
from numpy import where as np_where
import pandas as pd
import streamlit as st
import gspread
import pymongo
from itertools import combinations
import scipy.stats as stats
from time import sleep as time_sleep
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NHL_Database"]
return db
db = init_conn()
prop_table_options = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED', 'NHL_GAME_PLAYER_ASSISTS']
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
all_sim_vars = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED', 'NHL_GAME_PLAYER_ASSISTS']
pick6_sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
sim_all_hold = pd.DataFrame(columns=['Player', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge'])
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
border: 3px solid #FFD700;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #FFD700;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_resource(ttl=200)
def pull_baselines():
collection = db["Prop_Betting_Table"]
cursor = collection.find()
raw_display = pd.DataFrame(cursor)
prop_display = raw_display[raw_display['Player'] != ""]
prop_display['Player Blocks'].replace("", np.nan, inplace=True)
prop_table = prop_display[['Player', 'Position', 'Team', 'Opp', 'Team_Total', 'Player SOG', 'Player Goals', 'Player Assists',
'Player TP', 'Player Blocks', 'Player Saves']]
prop_table['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
prop_table['Player'] = prop_table['Player'].str.strip()
stat_columns = ['Team_Total', 'Player SOG', 'Player Goals', 'Player Assists', 'Player TP', 'Player Blocks', 'Player Saves']
for stat in stat_columns:
prop_table[stat] = prop_table[stat].astype(float)
collection = db["prop_trends"]
cursor = collection.find()
raw_display = pd.DataFrame(cursor)
raw_display.replace('', np.nan, inplace=True)
prop_trends = raw_display.dropna(subset='Player')
prop_trends['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
prop_trends = prop_trends.drop(columns=['_id', 'index'])
collection = db["Pick6_ingest"]
cursor = collection.find()
raw_display = pd.DataFrame(cursor)
raw_display.replace('', np.nan, inplace=True)
pick_frame = raw_display.dropna(subset='Player')
pick_frame['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
pick_frame = pick_frame.drop(columns=['_id', 'index'])
team_dict = dict(zip(prop_table['Player'], prop_table['Team']))
return prop_table, prop_trends, pick_frame, team_dict
def calculate_poisson(row):
mean_val = row['Mean_Outcome']
threshold = row['Prop']
cdf_value = stats.poisson.cdf(threshold, mean_val)
probability = 1 - cdf_value
return probability
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
tab1, tab2, tab3 = st.tabs(["Player Stat Table", 'Prop Trend Table', 'Stat Specific Simulations'])
with tab1:
with st.expander("Info and Filters"):
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
team_var = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='team_var1')
if team_var == 'Specific Teams':
team_var = st.multiselect('Which teams would you like to include in the tables?', options = prop_display['Team'].unique(), key='team_var2')
elif team_var == 'All':
team_var = prop_display['Team'].unique()
prop_frame = prop_display[prop_display['Team'].isin(team_var)]
st.dataframe(prop_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Table",
data=convert_df_to_csv(prop_frame),
file_name='NHL_prop_stat_export.csv',
mime='text/csv',
key='prop_export',
)
with tab2:
with st.expander("Info and Filters"):
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
if split_var5 == 'Specific Teams':
team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = prop_trends['Team'].unique(), key='team_var5')
elif split_var5 == 'All':
team_var5 = prop_trends.Team.values.tolist()
book_split5 = st.radio("Would you like to view all books or specific ones?", ('All', 'Specific Books'), key='book_split5')
if book_split5 == 'Specific Books':
book_var5 = st.multiselect('Which books would you like to include in the tables?', options = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'], key='book_var5')
elif book_split5 == 'All':
book_var5 = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
prop_type_var2 = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options)
prop_frame_disp = prop_trends[prop_trends['Team'].isin(team_var5)]
prop_frame_disp = prop_frame_disp[prop_frame_disp['book'].isin(book_var5)]
prop_frame_disp = prop_frame_disp[prop_frame_disp['prop_type'] == prop_type_var2]
prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), use_container_width = True)
st.download_button(
label="Export Prop Trends Model",
data=convert_df_to_csv(prop_frame_disp),
file_name='NHL_prop_trends_export.csv',
mime='text/csv',
)
with tab3:
st.info('The Over and Under percentages are a composite percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
if st.button("Reset Data/Load Data", key='reset5'):
st.cache_data.clear()
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
settings_container = st.container()
df_hold_container = st.empty()
export_container = st.empty()
with settings_container.container():
col1, col2, col3, col4 = st.columns([3, 3, 3, 3])
with col1:
game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
with col2:
book_select_var = st.selectbox('Select book', options = ['ALL', 'BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'])
if book_select_var == 'ALL':
book_selections = ['BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
else:
book_selections = [book_select_var]
if game_select_var == 'Aggregate':
prop_df = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
elif game_select_var == 'Pick6':
prop_df = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
book_selections = ['Pick6']
with col3:
if game_select_var == 'Aggregate':
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_ASSISTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED'])
elif game_select_var == 'Pick6':
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'Points', 'Shots on Goal', 'Assists', 'Blocks'])
with col4:
st.download_button(
label="Download Prop Source",
data=convert_df_to_csv(prop_df),
file_name='NHL_prop_source.csv',
mime='text/csv',
key='prop_source',
)
if st.button('Simulate Prop Category'):
with df_hold_container.container():
if prop_type_var == 'All Props':
if game_select_var == 'Aggregate':
prop_df_raw = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
sim_vars = ['NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_ASSISTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED']
elif game_select_var == 'Pick6':
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
player_df = prop_display.copy()
for prop in sim_vars:
for books in book_selections:
prop_df = prop_df_raw[prop_df_raw['prop_type'] == prop]
prop_df = prop_df[prop_df['book'] == books]
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
book_dict = dict(zip(prop_df.Player, prop_df.book))
over_dict = dict(zip(prop_df.Player, prop_df.Over))
under_dict = dict(zip(prop_df.Player, prop_df.Under))
trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
player_df['book'] = player_df['Player'].map(book_dict)
player_df['Prop'] = player_df['Player'].map(prop_dict)
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
df = player_df.reset_index(drop=True)
team_dict = dict(zip(df.Player, df.Team))
total_sims = 1000
df.replace("", 0, inplace=True)
if prop == 'NHL_GAME_PLAYER_POINTS' or prop == 'Points':
df['Median'] = df['Player TP']
elif prop == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL' or prop == 'Shots on Goal':
df['Median'] = df['Player SOG']
elif prop == 'NHL_GAME_PLAYER_ASSISTS' or prop == 'Assists':
df['Median'] = df['Player Assists']
elif prop == 'NHL_GAME_PLAYER_SHOTS_BLOCKED' or prop == 'Blocks':
df['Median'] = df['Player Blocks']
flex_file = df.copy()
flex_file['Floor'] = (flex_file['Median'] * .15)
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
flex_file['STD'] = (flex_file['Median']/3)
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
prop_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Book'] = players_only['Player'].map(book_dict)
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
players_only['over_adj'] = np_where((players_only['Mean_Outcome'] - players_only['Prop']) > 0, 1, (players_only['Mean_Outcome'] / players_only['Prop']))
players_only['under_adj'] = np_where((players_only['Prop'] - players_only['Mean_Outcome']) > 0, 1, (players_only['Prop'] / players_only['Mean_Outcome']))
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2)
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] * players_only['over_adj'], players_only['Under_diff'] * players_only['under_adj'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Prop Type'] = prop
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
final_outcomes = sim_all_hold
st.write(f'finished {prop} for {books}')
elif prop_type_var != 'All Props':
player_df = prop_display.copy()
if game_select_var == 'Aggregate':
prop_df_raw = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
elif game_select_var == 'Pick6':
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
for books in book_selections:
prop_df = prop_df_raw[prop_df_raw['book'] == books]
if prop_type_var == "NHL_GAME_PLAYER_SHOTS_ON_GOAL":
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL']
elif prop_type_var == 'Shots on Goal':
prop_df = prop_df[prop_df['prop_type'] == 'Player SOG']
elif prop_type_var == "NHL_GAME_PLAYER_POINTS":
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_POINTS']
elif prop_type_var == "Points":
prop_df = prop_df[prop_df['prop_type'] == 'Player TP']
elif prop_type_var == "NHL_GAME_PLAYER_ASSISTS":
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_ASSISTS']
elif prop_type_var == "Assists":
prop_df = prop_df[prop_df['prop_type'] == 'Player Assists']
elif prop_type_var == "NHL_GAME_PLAYER_SHOTS_BLOCKED":
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_SHOTS_BLOCKED']
elif prop_type_var == "Blocks":
prop_df = prop_df[prop_df['prop_type'] == 'Player Blocks']
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
book_dict = dict(zip(prop_df.Player, prop_df.book))
over_dict = dict(zip(prop_df.Player, prop_df.Over))
under_dict = dict(zip(prop_df.Player, prop_df.Under))
trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
player_df['book'] = player_df['Player'].map(book_dict)
player_df['Prop'] = player_df['Player'].map(prop_dict)
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
df = player_df.reset_index(drop=True)
team_dict = dict(zip(df.Player, df.Team))
total_sims = 1000
df.replace("", 0, inplace=True)
if prop_type_var == 'NHL_GAME_PLAYER_POINTS' or prop_type_var == 'Points':
df['Median'] = df['Player TP']
elif prop_type_var == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL' or prop_type_var == 'Shots on Goal':
df['Median'] = df['Player SOG']
elif prop_type_var == 'NHL_GAME_PLAYER_ASSISTS' or prop_type_var == 'Assists':
df['Median'] = df['Player Assists']
elif prop_type_var == 'NHL_GAME_PLAYER_SHOTS_BLOCKED' or prop_type_var == 'Blocks':
df['Median'] = df['Player Blocks']
flex_file = df.copy()
flex_file['Floor'] = (flex_file['Median'] * .15)
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
flex_file['STD'] = (flex_file['Median']/3)
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
prop_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Book'] = players_only['Player'].map(book_dict)
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
players_only['over_adj'] = np_where((players_only['Mean_Outcome'] - players_only['Prop']) > 0, 1, (players_only['Mean_Outcome'] / players_only['Prop']))
players_only['under_adj'] = np_where((players_only['Prop'] - players_only['Mean_Outcome']) > 0, 1, (players_only['Prop'] / players_only['Mean_Outcome']))
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2)
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] * players_only['over_adj'], players_only['Under_diff'] * players_only['under_adj'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Prop Type'] = prop_type_var
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Prop Type', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
final_outcomes = sim_all_hold
st.write(f'finished {prop_type_var} for {books}')
final_outcomes = final_outcomes[final_outcomes['Prop'] > 0]
if game_select_var == 'Pick6':
final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
with df_hold_container:
df_hold_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with export_container:
export_container = st.empty()
st.download_button(
label="Export Projections",
data=convert_df_to_csv(final_outcomes),
file_name='NHL_prop_proj.csv',
mime='text/csv',
key='prop_proj',
)