File size: 10,647 Bytes
6046583
 
 
 
 
 
 
 
 
 
 
 
97fb8ce
6046583
 
 
 
755d752
 
 
6046583
755d752
97fb8ce
755d752
6046583
 
cc94f0d
6046583
78ac3ba
 
 
 
 
 
 
 
 
 
 
00f90b0
78ac3ba
 
 
 
 
 
 
 
 
 
6a2c013
78ac3ba
 
 
 
00f90b0
78ac3ba
 
 
 
7936494
6046583
755d752
 
 
8e78c15
 
6046583
755d752
 
 
8e78c15
6046583
7499a50
755d752
 
8e78c15
755d752
 
6046583
11362fa
6046583
 
 
 
 
11362fa
 
6046583
80de24e
 
11362fa
6046583
 
78ac3ba
5236120
 
6046583
 
78ac3ba
 
 
6046583
c42b330
11362fa
 
 
 
 
 
 
71f0d1e
11362fa
 
71f0d1e
78ac3ba
 
 
 
 
 
 
 
 
 
 
 
5236120
 
 
 
 
 
 
78ac3ba
 
5236120
78ac3ba
 
 
6046583
 
78ac3ba
5236120
 
6046583
 
 
11362fa
 
6046583
c42b330
5bb8e91
78ac3ba
 
 
 
 
 
 
 
5236120
80de24e
5236120
 
80de24e
5236120
 
78ac3ba
 
5236120
78ac3ba
 
 
6046583
 
78ac3ba
5236120
 
6046583
 
 
11362fa
 
6046583
c42b330
5bb8e91
6046583
78ac3ba
 
 
 
 
 
 
5236120
80de24e
5236120
 
80de24e
5236120
 
78ac3ba
 
5236120
78ac3ba
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
from itertools import combinations

@st.cache_resource
def init_conn():
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["NHL_Database"]

        return db
    
db = init_conn()

player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
                   '4x%': '{:.2%}'}

st.markdown("""
<style>
    /* Tab styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 8px;
        padding: 4px;
    }

    .stTabs [data-baseweb="tab"] {
        height: 50px;
        white-space: pre-wrap;
        background-color: #DAA520;
        color: white;
        border-radius: 10px;
        gap: 1px;
        padding: 10px 20px;
        font-weight: bold;
        transition: all 0.3s ease;
    }

    .stTabs [aria-selected="true"] {
        background-color: #DAA520;
        border: 3px solid #FFD700;
        color: white;
    }

    .stTabs [data-baseweb="tab"]:hover {
        background-color: #FFD700;
        cursor: pointer;
    }
</style>""", unsafe_allow_html=True)

@st.cache_resource(ttl=200)
def player_stat_table():
    collection = db["Player_Level_ROO"] 
    cursor = collection.find()
    player_frame = pd.DataFrame(cursor)
    player_frame = player_frame[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own',
                                 'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']]

    collection = db["Player_Lines_ROO"] 
    cursor = collection.find()
    line_frame = pd.DataFrame(cursor)
    line_frame = line_frame[['Player', 'SK1', 'SK2', 'SK3', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '50+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']]

    collection = db["Player_Powerplay_ROO"] 
    cursor = collection.find()
    pp_frame = pd.DataFrame(cursor)
    pp_frame = pp_frame[['Player', 'SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '75+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']]

    timestamp = player_frame['timestamp'].values[0]

    return player_frame, line_frame, pp_frame, timestamp

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

player_frame, line_frame, pp_frame, timestamp = player_stat_table()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"

view_var1 = st.radio("View Type", ("Simple", "Advanced"), key='view_var1')

tab1, tab2, tab3 = st.tabs(["Player Range of Outcomes", "Line Combo Range of Outcomes", "Power Play Range of Outcomes"])

with tab1:
    with st.expander("Info and Filters"):
        with st.container():
            st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset1'):
            st.cache_data.clear()
            player_frame, line_frame, pp_frame, timestamp = player_stat_table()
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
        site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
        main_var1 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var1')
        split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
        if split_var1 == 'Specific Games':
            team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = player_frame['Team'].unique(), key='team_var1')
        elif split_var1 == 'Full Slate Run':
            team_var1 = player_frame.Team.values.tolist()
        pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
        if pos_split1 == 'Specific Positions':
            pos_var1 = st.multiselect('What Positions would you like to view?', options = ['C', 'W', 'D', 'G'])
        elif pos_split1 == 'All Positions':
            pos_var1 = 'All'
        sal_var1 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 20000), key='sal_var1')

    final_Proj = player_frame[player_frame['Site'] == str(site_var1)]
    final_Proj = final_Proj[final_Proj['Type'] == 'Basic']
    final_Proj = final_Proj[final_Proj['Slate'] == main_var1]
    final_Proj = final_Proj[player_frame['Team'].isin(team_var1)]
    final_Proj = final_Proj[final_Proj['Salary'] >= sal_var1[0]]
    final_Proj = final_Proj[final_Proj['Salary'] <= sal_var1[1]]
    if pos_var1 != 'All':
            final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))]
            final_Proj = final_Proj.sort_values(by='Median', ascending=False)
    if pos_var1 == 'All':
            final_Proj = final_Proj.sort_values(by='Median', ascending=False)
    
    if view_var1 == 'Advanced':
        display_proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
                                    'Own', 'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own']]
    elif view_var1 == 'Simple':
        display_proj = final_Proj[['Player', 'Position', 'Salary', 'Median', '3x%', 'Own']]
    st.dataframe(display_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True, hide_index=True)
    st.download_button(
            label="Export Tables",
            data=convert_df_to_csv(display_proj),
            file_name='NHL_player_export.csv',
            mime='text/csv',
    )

with tab2:
    with st.expander("Info and Filters"):
        with st.container():
            st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset2'):
              st.cache_data.clear()
              player_frame, line_frame, pp_frame, timestamp = player_stat_table()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
        site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
        main_var2 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var2')
        sal_var2 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var2')

    final_line_combos = line_frame[line_frame['Site'] == str(site_var2)]
    final_line_combos = final_line_combos[final_line_combos['Type'] == 'Basic']
    final_line_combos = final_line_combos[final_line_combos['Slate'] == main_var2]
    final_line_combos = final_line_combos[final_line_combos['Salary'] >= sal_var2[0]]
    final_line_combos = final_line_combos[final_line_combos['Salary'] <= sal_var2[1]]
    final_line_combos = final_line_combos.drop_duplicates(subset=['Player'])
    final_line_combos = final_line_combos.sort_values(by='Median', ascending=False)

    if view_var1 == 'Advanced':
        display_proj_lines = final_line_combos[['Player', 'SK1', 'SK2', 'SK3', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '50+%', '2x%', '3x%', '4x%',
                                    'Own']]
    elif view_var1 == 'Simple':
        display_proj_lines = final_line_combos[['SK1', 'SK2', 'SK3', 'Salary', 'Median', '3x%', 'Own']]
    st.dataframe(display_proj_lines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True, hide_index=True)
    st.download_button(
            label="Export Tables",
            data=convert_df_to_csv(display_proj_lines),
            file_name='NHL_linecombos_export.csv',
            mime='text/csv',
    )

with tab3:
    with st.expander("Info and Filters"):
        with st.container():
            st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset3'):
              st.cache_data.clear()
              player_frame, line_frame, pp_frame, timestamp = player_stat_table()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
        site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3')
        main_var3 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var3')
        sal_var3 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var3')
    
    final_pp_combos = pp_frame[pp_frame['Site'] == str(site_var3)]
    final_pp_combos = final_pp_combos[final_pp_combos['Type'] == 'Basic']
    final_pp_combos = final_pp_combos[final_pp_combos['Slate'] == main_var3]
    final_pp_combos = final_pp_combos[final_pp_combos['Salary'] >= sal_var3[0]]
    final_pp_combos = final_pp_combos[final_pp_combos['Salary'] <= sal_var3[1]]
    final_pp_combos = final_pp_combos.drop_duplicates(subset=['Player'])
    final_pp_combos = final_pp_combos.sort_values(by='Median', ascending=False)

    if view_var1 == 'Advanced':
        display_proj_pp = final_pp_combos[['Player', 'SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '75+%', '2x%', '3x%', '4x%',
                                    'Own']]
    elif view_var1 == 'Simple':
        display_proj_pp = final_pp_combos[['SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Median', '3x%', 'Own']]
    st.dataframe(display_proj_pp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True, hide_index=True)
    st.download_button(
            label="Export Tables",
            data=convert_df_to_csv(display_proj_pp),
            file_name='NHL_powerplay_export.csv',
            mime='text/csv',
    )