PGA_DFS_models / app.py
Multichem's picture
Create app.py
0917471
raw
history blame
15.5 kB
import pulp
import numpy as np
import pandas as pd
import random
import sys
import openpyxl
import re
import time
import streamlit as st
import matplotlib
from matplotlib.colors import LinearSegmentedColormap
import json
import requests
import gspread
import plotly.figure_factory as ff
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
st.set_page_config(layout="wide")
dk_player_url = 'PGA_Basic_ROO'
CSV_URL = 'https://sheetdb.io/api/v1/ckjq8yp37qxly?sheet=DK_CSV'
@st.cache_data
def load_dk_player_model(URL):
sh = gc.open(URL)
worksheet = sh.get_worksheet(0)
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display["Salary"] = raw_display["Salary"].replace("$", "", regex=True).astype(float)
raw_display['Top_finish'] = raw_display['Top_finish'].str.replace('%', '').astype(float)/100
raw_display['Top_5_finish'] = raw_display['Top_5_finish'].str.replace('%', '').astype(float)/100
raw_display['Top_10_finish'] = raw_display['Top_10_finish'].str.replace('%', '').astype(float)/100
raw_display['100+%'] = raw_display['100+%'].str.replace('%', '').astype(float)/100
raw_display['10x%'] = raw_display['10x%'].str.replace('%', '').astype(float)/100
raw_display['11x%'] = raw_display['11x%'].str.replace('%', '').astype(float)/100
raw_display['12x%'] = raw_display['12x%'].str.replace('%', '').astype(float)/100
raw_display['LevX'] = raw_display['LevX'].str.replace('%', '').astype(float)/100
return raw_display
@st.cache_data
def grab_csv_data(URL):
draftkings_data = pd.read_json(URL)
draftkings_data.rename(columns={"Name": "Player"}, inplace = True)
return draftkings_data
tab1, tab2 = st.tabs(["Player Overall Projections", "Optimizer"])
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
lineup_display = []
check_list = []
rand_player = 0
boost_player = 0
salaryCut = 0
with tab1:
if st.button("Reset Data", key='reset1'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
hold_display = load_dk_player_model(dk_player_url)
csv_data = grab_csv_data(CSV_URL)
csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
hold_container = st.empty()
display = hold_display.set_index('Player')
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Projections",
data=convert_df_to_csv(display),
file_name='PGA_DFS_export.csv',
mime='text/csv',
)
with tab2:
col1, col2 = st.columns([1, 4])
with col1:
max_sal = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100)
min_sal = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100)
proj_cut = st.number_input('Lowest median allowed', min_value = 0, max_value = 100, value = 50, step = 1)
slack_var = st.number_input('Median randomness', min_value = 0, max_value = 5, value = 0, step = 1)
totalRuns_raw = st.number_input('How many Lineups', min_value = 1, max_value = 1000, value = 5, step = 1)
totalRuns = totalRuns_raw
cut_group_1 = []
cut_group_2 = []
force_group_1 = []
force_group_2 = []
avoid_players = []
lock_player = []
lineups = []
player_pool_raw = []
player_pool = []
player_count = []
player_trim_pool = []
portfolio = pd.DataFrame()
x = 1
if st.button('Optimize'):
max_proj = 1000
max_own = 1000
total_proj = 0
total_own = 0
with col2:
with st.spinner('Wait for it...'):
with hold_container.container():
while x <= totalRuns:
raw_proj_file = hold_display
raw_flex_file = raw_proj_file.dropna(how='all')
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > proj_cut]
flex_file = raw_flex_file
flex_file = flex_file[['Player', 'Salary', 'Median', 'Own', 'LevX']]
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
flex_file['name_var'] = flex_file['Player']
flex_file['lock'] = flex_file['Player'].isin(lock_player)*1
flex_file['force_group_1'] = flex_file['Player'].isin(force_group_1)*1
flex_file['force_group_2'] = flex_file['Player'].isin(force_group_2)*1
flex_file['cut_group_1'] = flex_file['Player'].isin(cut_group_1)*1
flex_file['cut_group_2'] = flex_file['Player'].isin(cut_group_2)*1
chalk_file = flex_file.sort_values(by='Proj DK Own%', ascending=False)
chalk_group_df = chalk_file.sample(n=10)
chalk_group = chalk_group_df['Player'].tolist()
flex_file['chalk_group'] = flex_file['Player'].isin(chalk_group)*1
flex_file['Pos'] = 'G'
flex_file = flex_file[['Player', 'name_var', 'Pos', 'Salary', 'Median', 'Proj DK Own%', 'lock', 'force_group_1', 'force_group_2', 'cut_group_1', 'cut_group_2', 'chalk_group', 'LevX']]
if x > 1:
if slack_var > 0:
flex_file['randNumCol'] = np.random.randint(-int(slack_var),int(slack_var), flex_file.shape[0])
elif slack_var ==0:
flex_file['randNumCol'] = 0
elif x == 1:
flex_file['randNumCol'] = 0
flex_file['Median'] = flex_file['Median'] + flex_file['randNumCol']
flex_file_check = flex_file
check_list.append(flex_file['Median'][4])
player_ids = flex_file.index
overall_players = flex_file[['Player']]
overall_players['player_var_add'] = flex_file.index
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
player_lev = dict(zip(flex_file['Player'], flex_file['LevX']))
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal
for flex in flex_file['Pos'].unique():
sub_idx = flex_file[flex_file['Pos'] != "Var"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 6
player_count = []
player_trim = []
lineup_list = []
total_score += pulp.lpSum([player_vars[idx]*obj_points_max[idx] for idx in flex_file.index]) <= max_proj - .01
total_score.solve()
for v in total_score.variables():
if v.varValue > 0:
lineup_list.append(v.name)
df = pd.DataFrame(lineup_list)
df['Names'] = df[0].map(player_match)
df['Cost'] = df['Names'].map(player_sal)
df['Proj'] = df['Names'].map(player_proj)
df['Own'] = df['Names'].map(player_own)
total_cost = sum(df['Cost'])
total_own = sum(df['Own'])
total_proj = sum(df['Proj'])
lineup_raw = pd.DataFrame(lineup_list)
lineup_raw['Names'] = lineup_raw[0].map(player_match)
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
lineup_final = lineup_raw.sort_values(by=['value'])
del lineup_final[lineup_final.columns[0]]
del lineup_final[lineup_final.columns[1]]
lineup_final = lineup_final.reset_index(drop=True)
lineup_test = lineup_final
lineup_final = lineup_final.T
lineup_final['Cost'] = total_cost
lineup_final['Proj'] = total_proj
lineup_final['Own'] = total_own
if total_cost < 50001:
lineups.append(lineup_final)
lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
lineup_test['Own'] = lineup_test['Names'].map(player_own)
lineup_test['LevX'] = lineup_test['Names'].map(player_lev)
lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)
lineup_display.append(lineup_test)
with col2:
with st.container():
st.table(lineup_test)
max_proj = total_proj
max_own = total_own
check_list.append(total_proj)
portfolio = portfolio.append(lineup_final, ignore_index = True)
x += 1
portfolio.rename(columns={0: "Player_1", 1: "Player_2", 2: "Player_3", 3: "Player_4", 4: "Player_5", 5: "Player_6"}, inplace = True)
portfolio = portfolio.dropna()
final_outcomes = portfolio
final_outcomes['p1 id'] = final_outcomes['Player_1'].map(id_dict)
final_outcomes['p2 id'] = final_outcomes['Player_2'].map(id_dict)
final_outcomes['p3 id'] = final_outcomes['Player_3'].map(id_dict)
final_outcomes['p4 id'] = final_outcomes['Player_4'].map(id_dict)
final_outcomes['p5 id'] = final_outcomes['Player_5'].map(id_dict)
final_outcomes['p6 id'] = final_outcomes['Player_6'].map(id_dict)
final_outcomes = final_outcomes[['p1 id', 'p2 id', 'p3 id', 'p4 id', 'p5 id', 'p6 id']]
with col1:
st.download_button(
label="Export Lineups",
data=convert_df_to_csv(final_outcomes),
file_name='PGA_DFS_export.csv',
mime='text/csv',
)
with hold_container:
hold_container = st.empty()