Multichem commited on
Commit
6abd6e4
·
1 Parent(s): 858bb40

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -673,15 +673,15 @@ with tab2:
673
 
674
  # Set the factors based on the contest_var1
675
  factor_qb, factor_other = {
676
- 'Small': (10, 5),
677
- 'Medium': (6, 3),
678
- 'Large': (3, 1.5),
679
  }[contest_var1]
680
 
681
  # Apply the calculation to the DataFrame
682
  initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_qb if row['Position'] == 'QB' else factor_other), axis=1)
683
  initial_proj['Own%'] = initial_proj['Own%'].clip(upper=75)
684
- initial_proj['Own'] = initial_proj['Own%'] * (500 / initial_proj['Own%'].sum())
685
 
686
  # Drop unnecessary columns and create the final DataFrame
687
  Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
@@ -698,15 +698,15 @@ with tab2:
698
 
699
  # Set the factors based on the contest_var1
700
  factor_qb, factor_other = {
701
- 'Small': (10, 5),
702
- 'Medium': (6, 3),
703
- 'Large': (3, 1.5),
704
  }[contest_var1]
705
 
706
  # Apply the calculation to the DataFrame
707
  initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_qb if row['Position'] == 'QB' else factor_other), axis=1)
708
  initial_proj['Own%'] = initial_proj['Own%'].clip(upper=75)
709
- initial_proj['Own'] = initial_proj['Own%'] * (500 / initial_proj['Own%'].sum())
710
 
711
  # Drop unnecessary columns and create the final DataFrame
712
  Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
 
673
 
674
  # Set the factors based on the contest_var1
675
  factor_qb, factor_other = {
676
+ 'Small': (8, 10),
677
+ 'Medium': (5, 5),
678
+ 'Large': (1.5, 1.5),
679
  }[contest_var1]
680
 
681
  # Apply the calculation to the DataFrame
682
  initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_qb if row['Position'] == 'QB' else factor_other), axis=1)
683
  initial_proj['Own%'] = initial_proj['Own%'].clip(upper=75)
684
+ initial_proj['Own'] = initial_proj['Own%'] * (600 / initial_proj['Own%'].sum())
685
 
686
  # Drop unnecessary columns and create the final DataFrame
687
  Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
 
698
 
699
  # Set the factors based on the contest_var1
700
  factor_qb, factor_other = {
701
+ 'Small': (8, 10),
702
+ 'Medium': (5, 5),
703
+ 'Large': (1.5, 1.5),
704
  }[contest_var1]
705
 
706
  # Apply the calculation to the DataFrame
707
  initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_qb if row['Position'] == 'QB' else factor_other), axis=1)
708
  initial_proj['Own%'] = initial_proj['Own%'].clip(upper=75)
709
+ initial_proj['Own'] = initial_proj['Own%'] * (600 / initial_proj['Own%'].sum())
710
 
711
  # Drop unnecessary columns and create the final DataFrame
712
  Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]