James McCool
commited on
Commit
·
cc5cc89
1
Parent(s):
ad70227
Refactor app.py to streamline database connections and enhance seed frame initialization. Removed hardcoded credentials and improved function signatures to include a 'split' parameter for limiting data retrieval. Updated user interface logic for selecting sports and contest types, ensuring better data handling and export functionality.
Browse files
app.py
CHANGED
@@ -8,47 +8,13 @@ import time
|
|
8 |
|
9 |
@st.cache_resource
|
10 |
def init_conn():
|
11 |
-
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
12 |
-
|
13 |
-
credentials = {
|
14 |
-
"type": "service_account",
|
15 |
-
"project_id": "model-sheets-connect",
|
16 |
-
"private_key_id": st.secrets['model_sheets_connect_pk'],
|
17 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
|
18 |
-
"client_email": "[email protected]",
|
19 |
-
"client_id": "100369174533302798535",
|
20 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
21 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
22 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
23 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
|
24 |
-
}
|
25 |
-
|
26 |
-
credentials2 = {
|
27 |
-
"type": "service_account",
|
28 |
-
"project_id": "sheets-api-connect-378620",
|
29 |
-
"private_key_id": st.secrets['sheets_api_connect_pk'],
|
30 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
31 |
-
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
32 |
-
"client_id": "106625872877651920064",
|
33 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
34 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
35 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
36 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
37 |
-
}
|
38 |
|
39 |
uri = st.secrets['mongo_uri']
|
40 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
41 |
-
|
42 |
-
NFL_Data = st.secrets['NFL_Data']
|
43 |
-
|
44 |
-
NBA_Data = st.secrets['NBA_Data']
|
45 |
|
46 |
-
|
47 |
-
gc2 = gspread.service_account_from_dict(credentials2)
|
48 |
-
|
49 |
-
return gc, gc2, client, NFL_Data, NBA_Data
|
50 |
|
51 |
-
|
52 |
|
53 |
percentages_format = {'Exposure': '{:.2%}'}
|
54 |
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
@@ -56,14 +22,14 @@ dk_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'pro
|
|
56 |
fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
57 |
|
58 |
@st.cache_data(ttl = 599)
|
59 |
-
def init_DK_seed_frames(sport):
|
60 |
if sport == 'NFL':
|
61 |
db = client["NFL_Database"]
|
62 |
elif sport == 'NBA':
|
63 |
db = client["NBA_DFS"]
|
64 |
|
65 |
collection = db[f"DK_{sport}_SD_seed_frame"]
|
66 |
-
cursor = collection.find()
|
67 |
|
68 |
raw_display = pd.DataFrame(list(cursor))
|
69 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -72,7 +38,7 @@ def init_DK_seed_frames(sport):
|
|
72 |
return DK_seed
|
73 |
|
74 |
@st.cache_data(ttl = 599)
|
75 |
-
def init_DK_secondary_seed_frames(sport):
|
76 |
|
77 |
if sport == 'NFL':
|
78 |
db = client["NFL_Database"]
|
@@ -80,7 +46,7 @@ def init_DK_secondary_seed_frames(sport):
|
|
80 |
db = client["NBA_DFS"]
|
81 |
|
82 |
collection = db[f"DK_{sport}_Secondary_SD_seed_frame"]
|
83 |
-
cursor = collection.find()
|
84 |
|
85 |
raw_display = pd.DataFrame(list(cursor))
|
86 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -89,7 +55,7 @@ def init_DK_secondary_seed_frames(sport):
|
|
89 |
return DK_second_seed
|
90 |
|
91 |
@st.cache_data(ttl = 599)
|
92 |
-
def init_DK_auxiliary_seed_frames(sport):
|
93 |
|
94 |
if sport == 'NFL':
|
95 |
db = client["NFL_Database"]
|
@@ -97,7 +63,7 @@ def init_DK_auxiliary_seed_frames(sport):
|
|
97 |
db = client["NBA_DFS"]
|
98 |
|
99 |
collection = db[f"DK_{sport}_Auxiliary_SD_seed_frame"]
|
100 |
-
cursor = collection.find()
|
101 |
|
102 |
raw_display = pd.DataFrame(list(cursor))
|
103 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -106,7 +72,7 @@ def init_DK_auxiliary_seed_frames(sport):
|
|
106 |
return DK_auxiliary_seed
|
107 |
|
108 |
@st.cache_data(ttl = 599)
|
109 |
-
def init_FD_seed_frames(sport):
|
110 |
|
111 |
if sport == 'NFL':
|
112 |
db = client["NFL_Database"]
|
@@ -114,7 +80,7 @@ def init_FD_seed_frames(sport):
|
|
114 |
db = client["NBA_DFS"]
|
115 |
|
116 |
collection = db[f"FD_{sport}_SD_seed_frame"]
|
117 |
-
cursor = collection.find()
|
118 |
|
119 |
raw_display = pd.DataFrame(list(cursor))
|
120 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -123,7 +89,7 @@ def init_FD_seed_frames(sport):
|
|
123 |
return FD_seed
|
124 |
|
125 |
@st.cache_data(ttl = 599)
|
126 |
-
def init_FD_secondary_seed_frames(sport):
|
127 |
|
128 |
if sport == 'NFL':
|
129 |
db = client["NFL_Database"]
|
@@ -131,7 +97,7 @@ def init_FD_secondary_seed_frames(sport):
|
|
131 |
db = client["NBA_DFS"]
|
132 |
|
133 |
collection = db[f"FD_{sport}_Secondary_SD_seed_frame"]
|
134 |
-
cursor = collection.find()
|
135 |
|
136 |
raw_display = pd.DataFrame(list(cursor))
|
137 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -140,7 +106,7 @@ def init_FD_secondary_seed_frames(sport):
|
|
140 |
return FD_second_seed
|
141 |
|
142 |
@st.cache_data(ttl = 599)
|
143 |
-
def init_FD_auxiliary_seed_frames(sport):
|
144 |
|
145 |
if sport == 'NFL':
|
146 |
db = client["NFL_Database"]
|
@@ -148,7 +114,7 @@ def init_FD_auxiliary_seed_frames(sport):
|
|
148 |
db = client["NBA_DFS"]
|
149 |
|
150 |
collection = db[f"FD_{sport}_Auxiliary_SD_seed_frame"]
|
151 |
-
cursor = collection.find()
|
152 |
|
153 |
raw_display = pd.DataFrame(list(cursor))
|
154 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -246,10 +212,9 @@ def calculate_FD_value_frequencies(np_array):
|
|
246 |
return combined_array
|
247 |
|
248 |
@st.cache_data
|
249 |
-
def sim_contest(Sim_size, seed_frame, maps_dict,
|
250 |
SimVar = 1
|
251 |
Sim_Winners = []
|
252 |
-
fp_array = seed_frame[:sharp_split, :]
|
253 |
|
254 |
# Pre-vectorize functions
|
255 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
@@ -260,7 +225,7 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
|
|
260 |
st.write('Simulating contest on frames')
|
261 |
|
262 |
while SimVar <= Sim_size:
|
263 |
-
fp_random =
|
264 |
|
265 |
sample_arrays1 = np.c_[
|
266 |
fp_random,
|
@@ -285,6 +250,8 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
|
|
285 |
|
286 |
return Sim_Winners
|
287 |
|
|
|
|
|
288 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
289 |
with tab2:
|
290 |
col1, col2 = st.columns([1, 7])
|
@@ -296,31 +263,11 @@ with tab2:
|
|
296 |
dk_raw, fd_raw = init_baselines('NFL')
|
297 |
|
298 |
sport_var1 = st.radio("What sport are you working with?", ('NFL', 'NBA'), key='sport_var1')
|
299 |
-
dk_raw, fd_raw = init_baselines(sport_var1)
|
300 |
slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='slate_var1')
|
|
|
301 |
|
302 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
|
303 |
if site_var1 == 'Draftkings':
|
304 |
-
if slate_var1 == 'Showdown':
|
305 |
-
DK_seed = init_DK_seed_frames(sport_var1)
|
306 |
-
if sport_var1 == 'NFL':
|
307 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
308 |
-
elif sport_var1 == 'NBA':
|
309 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
310 |
-
elif slate_var1 == 'Secondary Showdown':
|
311 |
-
DK_seed = init_DK_secondary_seed_frames(sport_var1)
|
312 |
-
if sport_var1 == 'NFL':
|
313 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
314 |
-
elif sport_var1 == 'NBA':
|
315 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
316 |
-
elif slate_var1 == 'Auxiliary Showdown':
|
317 |
-
DK_seed = init_DK_auxiliary_seed_frames(sport_var1)
|
318 |
-
if sport_var1 == 'NFL':
|
319 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
320 |
-
elif sport_var1 == 'NBA':
|
321 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
322 |
-
raw_baselines = dk_raw
|
323 |
-
column_names = dk_columns
|
324 |
|
325 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
326 |
if team_var1 == 'Specific Teams':
|
@@ -335,26 +282,6 @@ with tab2:
|
|
335 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
336 |
|
337 |
elif site_var1 == 'Fanduel':
|
338 |
-
if slate_var1 == 'Showdown':
|
339 |
-
FD_seed = init_FD_seed_frames(sport_var1)
|
340 |
-
if sport_var1 == 'NFL':
|
341 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
342 |
-
elif sport_var1 == 'NBA':
|
343 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
344 |
-
elif slate_var1 == 'Secondary Showdown':
|
345 |
-
FD_seed = init_FD_secondary_seed_frames(sport_var1)
|
346 |
-
if sport_var1 == 'NFL':
|
347 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
348 |
-
elif sport_var1 == 'NBA':
|
349 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
350 |
-
elif slate_var1 == 'Auxiliary Showdown':
|
351 |
-
FD_seed = init_FD_auxiliary_seed_frames(sport_var1)
|
352 |
-
if sport_var1 == 'NFL':
|
353 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
354 |
-
elif sport_var1 == 'NBA':
|
355 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
356 |
-
raw_baselines = fd_raw
|
357 |
-
column_names = fd_columns
|
358 |
|
359 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
360 |
if team_var1 == 'Specific Teams':
|
@@ -370,12 +297,58 @@ with tab2:
|
|
370 |
|
371 |
|
372 |
if st.button("Prepare data export", key='data_export'):
|
|
|
373 |
data_export = st.session_state.working_seed.copy()
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
mime='text/csv',
|
380 |
)
|
381 |
|
@@ -387,7 +360,24 @@ with tab2:
|
|
387 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
388 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
389 |
elif 'working_seed' not in st.session_state:
|
390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
|
392 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
393 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
@@ -398,7 +388,26 @@ with tab2:
|
|
398 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
|
399 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
400 |
elif 'working_seed' not in st.session_state:
|
401 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
|
403 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
|
404 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
@@ -420,48 +429,11 @@ with tab1:
|
|
420 |
sim_slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='sim_slate_var1')
|
421 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
422 |
if sim_site_var1 == 'Draftkings':
|
423 |
-
if sim_slate_var1 == 'Showdown':
|
424 |
-
DK_seed = init_DK_seed_frames(sim_sport_var1)
|
425 |
-
if sport_var1 == 'NFL':
|
426 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
427 |
-
elif sport_var1 == 'NBA':
|
428 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
429 |
-
elif sim_slate_var1 == 'Secondary Showdown':
|
430 |
-
DK_seed = init_DK_secondary_seed_frames(sim_sport_var1)
|
431 |
-
if sport_var1 == 'NFL':
|
432 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
433 |
-
elif sport_var1 == 'NBA':
|
434 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
435 |
-
elif sim_slate_var1 == 'Auxiliary Showdown':
|
436 |
-
DK_seed = init_DK_auxiliary_seed_frames(sim_sport_var1)
|
437 |
-
if sport_var1 == 'NFL':
|
438 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
439 |
-
elif sport_var1 == 'NBA':
|
440 |
-
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
441 |
raw_baselines = dk_raw
|
442 |
column_names = dk_columns
|
443 |
elif sim_site_var1 == 'Fanduel':
|
444 |
-
if sim_slate_var1 == 'Showdown':
|
445 |
-
FD_seed = init_FD_seed_frames(sim_sport_var1)
|
446 |
-
if sport_var1 == 'NFL':
|
447 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
448 |
-
elif sport_var1 == 'NBA':
|
449 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
450 |
-
elif sim_slate_var1 == 'Secondary Showdown':
|
451 |
-
FD_seed = init_FD_secondary_seed_frames(sim_sport_var1)
|
452 |
-
if sport_var1 == 'NFL':
|
453 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
454 |
-
elif sport_var1 == 'NBA':
|
455 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
456 |
-
elif sim_slate_var1 == 'Auxiliary Showdown':
|
457 |
-
FD_seed = init_FD_auxiliary_seed_frames(sim_sport_var1)
|
458 |
-
if sport_var1 == 'NFL':
|
459 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
460 |
-
elif sport_var1 == 'NBA':
|
461 |
-
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
462 |
raw_baselines = fd_raw
|
463 |
column_names = fd_columns
|
464 |
-
|
465 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
466 |
if contest_var1 == 'Small':
|
467 |
Contest_Size = 1000
|
@@ -503,7 +475,7 @@ with tab1:
|
|
503 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
|
504 |
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
|
505 |
}
|
506 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict,
|
507 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
508 |
|
509 |
#st.table(Sim_Winner_Frame)
|
@@ -530,9 +502,47 @@ with tab1:
|
|
530 |
|
531 |
else:
|
532 |
if sim_site_var1 == 'Draftkings':
|
533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
elif sim_site_var1 == 'Fanduel':
|
535 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
maps_dict = {
|
537 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
538 |
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
|
@@ -544,7 +554,7 @@ with tab1:
|
|
544 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
|
545 |
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
|
546 |
}
|
547 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict,
|
548 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
549 |
|
550 |
#st.table(Sim_Winner_Frame)
|
|
|
8 |
|
9 |
@st.cache_resource
|
10 |
def init_conn():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
uri = st.secrets['mongo_uri']
|
13 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
return client
|
|
|
|
|
|
|
16 |
|
17 |
+
client = init_conn()
|
18 |
|
19 |
percentages_format = {'Exposure': '{:.2%}'}
|
20 |
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
|
|
22 |
fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
23 |
|
24 |
@st.cache_data(ttl = 599)
|
25 |
+
def init_DK_seed_frames(sport, split):
|
26 |
if sport == 'NFL':
|
27 |
db = client["NFL_Database"]
|
28 |
elif sport == 'NBA':
|
29 |
db = client["NBA_DFS"]
|
30 |
|
31 |
collection = db[f"DK_{sport}_SD_seed_frame"]
|
32 |
+
cursor = collection.find().limit(split)
|
33 |
|
34 |
raw_display = pd.DataFrame(list(cursor))
|
35 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
38 |
return DK_seed
|
39 |
|
40 |
@st.cache_data(ttl = 599)
|
41 |
+
def init_DK_secondary_seed_frames(sport, split):
|
42 |
|
43 |
if sport == 'NFL':
|
44 |
db = client["NFL_Database"]
|
|
|
46 |
db = client["NBA_DFS"]
|
47 |
|
48 |
collection = db[f"DK_{sport}_Secondary_SD_seed_frame"]
|
49 |
+
cursor = collection.find().limit(split)
|
50 |
|
51 |
raw_display = pd.DataFrame(list(cursor))
|
52 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
55 |
return DK_second_seed
|
56 |
|
57 |
@st.cache_data(ttl = 599)
|
58 |
+
def init_DK_auxiliary_seed_frames(sport, split):
|
59 |
|
60 |
if sport == 'NFL':
|
61 |
db = client["NFL_Database"]
|
|
|
63 |
db = client["NBA_DFS"]
|
64 |
|
65 |
collection = db[f"DK_{sport}_Auxiliary_SD_seed_frame"]
|
66 |
+
cursor = collection.find().limit(split)
|
67 |
|
68 |
raw_display = pd.DataFrame(list(cursor))
|
69 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
72 |
return DK_auxiliary_seed
|
73 |
|
74 |
@st.cache_data(ttl = 599)
|
75 |
+
def init_FD_seed_frames(sport, split):
|
76 |
|
77 |
if sport == 'NFL':
|
78 |
db = client["NFL_Database"]
|
|
|
80 |
db = client["NBA_DFS"]
|
81 |
|
82 |
collection = db[f"FD_{sport}_SD_seed_frame"]
|
83 |
+
cursor = collection.find().limit(split)
|
84 |
|
85 |
raw_display = pd.DataFrame(list(cursor))
|
86 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
89 |
return FD_seed
|
90 |
|
91 |
@st.cache_data(ttl = 599)
|
92 |
+
def init_FD_secondary_seed_frames(sport, split):
|
93 |
|
94 |
if sport == 'NFL':
|
95 |
db = client["NFL_Database"]
|
|
|
97 |
db = client["NBA_DFS"]
|
98 |
|
99 |
collection = db[f"FD_{sport}_Secondary_SD_seed_frame"]
|
100 |
+
cursor = collection.find().limit(split)
|
101 |
|
102 |
raw_display = pd.DataFrame(list(cursor))
|
103 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
106 |
return FD_second_seed
|
107 |
|
108 |
@st.cache_data(ttl = 599)
|
109 |
+
def init_FD_auxiliary_seed_frames(sport, split):
|
110 |
|
111 |
if sport == 'NFL':
|
112 |
db = client["NFL_Database"]
|
|
|
114 |
db = client["NBA_DFS"]
|
115 |
|
116 |
collection = db[f"FD_{sport}_Auxiliary_SD_seed_frame"]
|
117 |
+
cursor = collection.find().limit(split)
|
118 |
|
119 |
raw_display = pd.DataFrame(list(cursor))
|
120 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
212 |
return combined_array
|
213 |
|
214 |
@st.cache_data
|
215 |
+
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
|
216 |
SimVar = 1
|
217 |
Sim_Winners = []
|
|
|
218 |
|
219 |
# Pre-vectorize functions
|
220 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
|
|
225 |
st.write('Simulating contest on frames')
|
226 |
|
227 |
while SimVar <= Sim_size:
|
228 |
+
fp_random = seed_frame[np.random.choice(seed_frame.shape[0], Contest_Size)]
|
229 |
|
230 |
sample_arrays1 = np.c_[
|
231 |
fp_random,
|
|
|
250 |
|
251 |
return Sim_Winners
|
252 |
|
253 |
+
dk_raw, fd_raw = init_baselines('NFL')
|
254 |
+
|
255 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
256 |
with tab2:
|
257 |
col1, col2 = st.columns([1, 7])
|
|
|
263 |
dk_raw, fd_raw = init_baselines('NFL')
|
264 |
|
265 |
sport_var1 = st.radio("What sport are you working with?", ('NFL', 'NBA'), key='sport_var1')
|
|
|
266 |
slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='slate_var1')
|
267 |
+
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
268 |
|
269 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
|
270 |
if site_var1 == 'Draftkings':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
273 |
if team_var1 == 'Specific Teams':
|
|
|
282 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
283 |
|
284 |
elif site_var1 == 'Fanduel':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
287 |
if team_var1 == 'Specific Teams':
|
|
|
297 |
|
298 |
|
299 |
if st.button("Prepare data export", key='data_export'):
|
300 |
+
if 'working_seed' in st.session_state:
|
301 |
data_export = st.session_state.working_seed.copy()
|
302 |
+
elif 'working_seed' not in st.session_state:
|
303 |
+
if site_var1 == 'Draftkings':
|
304 |
+
if slate_var1 == 'Showdown':
|
305 |
+
st.session_state.working_seed = init_DK_seed_frames(sport_var1, sharp_split_var)
|
306 |
+
if sport_var1 == 'NFL':
|
307 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
308 |
+
elif sport_var1 == 'NBA':
|
309 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
310 |
+
elif slate_var1 == 'Secondary Showdown':
|
311 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sport_var1, sharp_split_var)
|
312 |
+
if sport_var1 == 'NFL':
|
313 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
314 |
+
elif sport_var1 == 'NBA':
|
315 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
316 |
+
elif slate_var1 == 'Auxiliary Showdown':
|
317 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sport_var1, sharp_split_var)
|
318 |
+
if sport_var1 == 'NFL':
|
319 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
320 |
+
elif sport_var1 == 'NBA':
|
321 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
322 |
+
raw_baselines = dk_raw
|
323 |
+
column_names = dk_columns
|
324 |
+
elif site_var1 == 'Fanduel':
|
325 |
+
if slate_var1 == 'Showdown':
|
326 |
+
st.session_state.working_seed = init_FD_seed_frames(sport_var1, sharp_split_var)
|
327 |
+
if sport_var1 == 'NFL':
|
328 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
329 |
+
elif sport_var1 == 'NBA':
|
330 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
331 |
+
elif slate_var1 == 'Secondary Showdown':
|
332 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sport_var1, sharp_split_var)
|
333 |
+
if sport_var1 == 'NFL':
|
334 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
335 |
+
elif sport_var1 == 'NBA':
|
336 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
337 |
+
elif slate_var1 == 'Auxiliary Showdown':
|
338 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sport_var1, sharp_split_var)
|
339 |
+
if sport_var1 == 'NFL':
|
340 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
341 |
+
elif sport_var1 == 'NBA':
|
342 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
343 |
+
raw_baselines = fd_raw
|
344 |
+
column_names = fd_columns
|
345 |
+
data_export = st.session_state.working_seed.copy()
|
346 |
+
for col in range(6):
|
347 |
+
data_export[:, col] = np.array([export_id_dict.get(x, x) for x in data_export[:, col]])
|
348 |
+
st.download_button(
|
349 |
+
label="Export optimals set",
|
350 |
+
data=convert_df(data_export),
|
351 |
+
file_name='NFL_SD_optimals_export.csv',
|
352 |
mime='text/csv',
|
353 |
)
|
354 |
|
|
|
360 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
361 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
362 |
elif 'working_seed' not in st.session_state:
|
363 |
+
if slate_var1 == 'Showdown':
|
364 |
+
st.session_state.working_seed = init_DK_seed_frames(sport_var1, sharp_split_var)
|
365 |
+
if sport_var1 == 'NFL':
|
366 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
367 |
+
elif sport_var1 == 'NBA':
|
368 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
369 |
+
elif slate_var1 == 'Secondary Showdown':
|
370 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sport_var1, sharp_split_var)
|
371 |
+
if sport_var1 == 'NFL':
|
372 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
373 |
+
elif sport_var1 == 'NBA':
|
374 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
375 |
+
elif slate_var1 == 'Auxiliary Showdown':
|
376 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sport_var1, sharp_split_var)
|
377 |
+
if sport_var1 == 'NFL':
|
378 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
379 |
+
elif sport_var1 == 'NBA':
|
380 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
381 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
|
382 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
383 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
388 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
|
389 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
390 |
elif 'working_seed' not in st.session_state:
|
391 |
+
if slate_var1 == 'Showdown':
|
392 |
+
st.session_state.working_seed = init_FD_seed_frames(sport_var1, sharp_split_var)
|
393 |
+
if sport_var1 == 'NFL':
|
394 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
395 |
+
elif sport_var1 == 'NBA':
|
396 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
397 |
+
elif slate_var1 == 'Secondary Showdown':
|
398 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sport_var1, sharp_split_var)
|
399 |
+
if sport_var1 == 'NFL':
|
400 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
401 |
+
elif sport_var1 == 'NBA':
|
402 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
403 |
+
elif slate_var1 == 'Auxiliary Showdown':
|
404 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sport_var1, sharp_split_var)
|
405 |
+
if sport_var1 == 'NFL':
|
406 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
407 |
+
elif sport_var1 == 'NBA':
|
408 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
409 |
+
raw_baselines = fd_raw
|
410 |
+
column_names = fd_columns
|
411 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
|
412 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
|
413 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
429 |
sim_slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='sim_slate_var1')
|
430 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
431 |
if sim_site_var1 == 'Draftkings':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
raw_baselines = dk_raw
|
433 |
column_names = dk_columns
|
434 |
elif sim_site_var1 == 'Fanduel':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
raw_baselines = fd_raw
|
436 |
column_names = fd_columns
|
|
|
437 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
438 |
if contest_var1 == 'Small':
|
439 |
Contest_Size = 1000
|
|
|
475 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
|
476 |
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
|
477 |
}
|
478 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, Contest_Size)
|
479 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
480 |
|
481 |
#st.table(Sim_Winner_Frame)
|
|
|
502 |
|
503 |
else:
|
504 |
if sim_site_var1 == 'Draftkings':
|
505 |
+
if sim_slate_var1 == 'Showdown':
|
506 |
+
st.session_state.working_seed = init_DK_seed_frames(sim_sport_var1, sharp_split_var)
|
507 |
+
if sport_var1 == 'NFL':
|
508 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
509 |
+
elif sport_var1 == 'NBA':
|
510 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
511 |
+
elif sim_slate_var1 == 'Secondary Showdown':
|
512 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sim_sport_var1, sharp_split_var)
|
513 |
+
if sport_var1 == 'NFL':
|
514 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
515 |
+
elif sport_var1 == 'NBA':
|
516 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
517 |
+
elif sim_slate_var1 == 'Auxiliary Showdown':
|
518 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sim_sport_var1, sharp_split_var)
|
519 |
+
if sport_var1 == 'NFL':
|
520 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
521 |
+
elif sport_var1 == 'NBA':
|
522 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
523 |
+
raw_baselines = dk_raw
|
524 |
+
column_names = dk_columns
|
525 |
elif sim_site_var1 == 'Fanduel':
|
526 |
+
if sim_slate_var1 == 'Showdown':
|
527 |
+
st.session_state.working_seed = init_FD_seed_frames(sim_sport_var1, sharp_split_var)
|
528 |
+
if sport_var1 == 'NFL':
|
529 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
530 |
+
elif sport_var1 == 'NBA':
|
531 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
532 |
+
elif sim_slate_var1 == 'Secondary Showdown':
|
533 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sim_sport_var1, sharp_split_var)
|
534 |
+
if sport_var1 == 'NFL':
|
535 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
536 |
+
elif sport_var1 == 'NBA':
|
537 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
538 |
+
elif sim_slate_var1 == 'Auxiliary Showdown':
|
539 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sim_sport_var1, sharp_split_var)
|
540 |
+
if sport_var1 == 'NFL':
|
541 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
542 |
+
elif sport_var1 == 'NBA':
|
543 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
544 |
+
raw_baselines = fd_raw
|
545 |
+
column_names = fd_columns
|
546 |
maps_dict = {
|
547 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
548 |
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
|
|
|
554 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
|
555 |
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
|
556 |
}
|
557 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, Contest_Size)
|
558 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
559 |
|
560 |
#st.table(Sim_Winner_Frame)
|