File size: 18,583 Bytes
ffdc4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d54556
 
 
 
 
 
ffdc4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8566d3
ffdc4c9
 
 
 
 
 
 
a8566d3
ffdc4c9
 
 
 
 
 
 
a8566d3
ffdc4c9
ba88186
ffdc4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8566d3
ffdc4c9
 
 
 
 
 
 
a8566d3
ffdc4c9
 
 
 
 
 
 
a8566d3
ffdc4c9
bdec482
ffdc4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8566d3
ffdc4c9
 
 
 
 
 
 
a8566d3
ffdc4c9
 
 
 
 
 
 
a8566d3
ffdc4c9
8d54556
ffdc4c9
174661a
ffdc4c9
 
 
 
 
 
 
 
 
 
 
8d54556
6dbe3a8
ffdc4c9
 
 
 
6dbe3a8
ffdc4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d54556
dd671e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffdc4c9
 
 
 
 
 
 
590cd48
d473159
d1f63f3
 
11236ec
ffdc4c9
 
 
 
 
 
 
 
 
 
 
 
8d54556
11236ec
 
 
 
 
 
 
 
 
 
 
 
ffdc4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11236ec
ffdc4c9
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import pandas as pd
import streamlit as st
import gspread

scope = ['https://www.googleapis.com/auth/spreadsheets',
          "https://www.googleapis.com/auth/drive"]

credentials = {
  "type": "service_account",
  "project_id": "sheets-api-connect-378620",
  "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
  "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
  "client_id": "106625872877651920064",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}

gc = gspread.service_account_from_dict(credentials)

st.set_page_config(layout="wide")

@st.cache_data
def init_baselines():
    sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit#gid=1858245367')
    worksheet = sh.worksheet('ROO')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.loc[raw_display['Salary'] > 0]
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    roo_table = raw_display.sort_values(by='Median', ascending=False)
    
    # worksheet = sh.worksheet('Positional_Boosts')
    # raw_display = pd.DataFrame(worksheet.get_all_records())
    # raw_display.replace("", 'Welp', inplace=True)
    # raw_display = raw_display.loc[raw_display['teamname'] != 'Welp']
    # raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    # positional_boosts = raw_display.sort_values(by='Avg_Allowed', ascending=False)
    
    worksheet = sh.worksheet('Overall_Stacks')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lck_overall_stacks = raw_display.sort_values(by='Stack+', ascending=False)
    
    worksheet = sh.worksheet('Win_Stacks')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lck_win_stacks = raw_display.sort_values(by='Stack+', ascending=False)
    
    worksheet = sh.worksheet('Loss_Stacks')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lck_loss_stacks = raw_display.sort_values(by='Stack+', ascending=False)
    
    worksheet = sh.worksheet('Overall_BO1_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lck_bo1 = raw_display
    
    worksheet = sh.worksheet('Overall_BO3_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lck_bo3 = raw_display
    
    worksheet = sh.worksheet('Overall_BO5_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lck_bo5 = raw_display
    
    sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit#gid=1858245367')
    worksheet = sh.worksheet('Overall_Stacks')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lcs_overall_stacks = raw_display.sort_values(by='Stack+', ascending=False)
    
    worksheet = sh.worksheet('Win_Stacks')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lcs_win_stacks = raw_display.sort_values(by='Stack+', ascending=False)
    
    worksheet = sh.worksheet('Loss_Stacks')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lcs_loss_stacks = raw_display.sort_values(by='Stack+', ascending=False)
    
    worksheet = sh.worksheet('Overall_BO1_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lcs_bo1 = raw_display
    
    worksheet = sh.worksheet('Overall_BO3_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lcs_bo3 = raw_display
    
    worksheet = sh.worksheet('Overall_BO5_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lcs_bo5 = raw_display
    
    sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1oOJD_QcBeDJ1f7e9FfgUHOQEPT6kvU0Sa9hQ_4B8gqc/edit?gid=1288836099#gid=1288836099')
    worksheet = sh.worksheet('Overall_Stacks')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lec_overall_stacks = raw_display.sort_values(by='Stack+', ascending=False)
    
    worksheet = sh.worksheet('Win_Stacks')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lec_win_stacks = raw_display.sort_values(by='Stack+', ascending=False)
    
    worksheet = sh.worksheet('Loss_Stacks')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lec_loss_stacks = raw_display.sort_values(by='Stack+', ascending=False)
    
    worksheet = sh.worksheet('Overall_BO1_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lec_bo1 = raw_display
    
    worksheet = sh.worksheet('Overall_BO3_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lec_bo3 = raw_display
    
    worksheet = sh.worksheet('Overall_BO5_Stats')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
    raw_display.replace("", 'Welp', inplace=True)
    raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    lec_bo5 = raw_display

    return roo_table, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5

roo_table, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()

tab1, tab2, tab3 = st.tabs(["LOL Stacks Table", "LOL Range of Outcomes", "LOL Player Base Stats"])

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

with tab1:
    if st.button("Reset Data", key='reset1'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
              roo_table, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()
    league_choice1 = st.radio("What table would you like to display?", ('LCK/LPL', 'LCS', 'LEC'), key='league_var1')
    if league_choice1 == 'LCK/LPL':
      league_hold = lck_overall_stacks
    elif league_choice1 == 'LCS':
      league_hold = lcs_overall_stacks
    elif league_choice1 == 'LEC':
      league_hold = lec_overall_stacks
    display = league_hold.set_index('Team')
    st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    st.download_button(
        label="Export Stacks",
        data=convert_df_to_csv(display),
        file_name='LOL_Stacks_export.csv',
        mime='text/csv',
    )
  
with tab2:
    if st.button("Reset Data", key='reset2'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
              roo_table, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()
    with st.container():
        col1, col2, col3, col4 = st.columns([4, 2, 2, 2])

        with col1:
            league_choice2 = st.radio("What table would you like to display?", ('LCK/LPL', 'LCS', 'LEC'), key='league_var2')
            if league_choice2 == 'LCK/LPL':
              league_hold = roo_table[roo_table['league'] == 'LCK']
            elif league_choice2 == 'LCS':
              league_hold = roo_table[roo_table['league'] == 'LCS']
            elif league_choice2 == 'LEC':
              league_hold = roo_table[roo_table['league'] == 'LEC']
        with col2:
            model_choice = st.radio("What table would you like to display?", ('Overall', 'Wins', 'Losses'), key='roo_table')
            if model_choice == 'Overall':
              hold_display = league_hold[league_hold['type'] == 'Overall']
            elif model_choice == 'Wins':
              hold_display = league_hold[league_hold['type'] == 'Wins']
            elif model_choice == 'Losses':
              hold_display = league_hold[league_hold['type'] == 'Losses']
        with col3:
            pos_var1 = st.selectbox('View specific position?', options = ['All', 'TOP', 'JNG', 'MID', 'ADC', 'SUP'], key = 'roo_posvar')
        with col4:
            team_var1 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'roo_teamvar')
    display = hold_display.set_index('Player')
    if team_var1:
          display = display[display['Team'].isin(team_var1)]
    if pos_var1 == 'All':
          display = display
    elif pos_var1 != 'All':
          display = display[display['Position'].str.contains(pos_var1)]
    display = display.drop(columns=['type', 'league', 'Timestamp'])
    display['Cpt_Own'] = ((display['Own']) * ((100 - (100-display['Own'])))) / 300
    scale_var = display['Cpt_Own'].sum()
    display['Cpt_Own'] = display['Cpt_Own'] * (100 / scale_var)
    st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=750, use_container_width = True)
    st.download_button(
        label="Export Range of Outcomes",
        data=convert_df_to_csv(display),
        file_name='LOL_ROO_export.csv',
        mime='text/csv',
    )

with tab3:
    if st.button("Reset Data", key='reset3'):
              # Clear values from *all* all in-memory and on-disk data caches:
              # i.e. clear values from both square and cube
              st.cache_data.clear()
              roo_table, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()
    with st.container():
        col1, col2, col3, col4 = st.columns([4, 2, 2, 2])

        with col1:
            league_choice3 = st.radio("What table would you like to display?", ('LCK/LPL', 'LCS', 'LEC'), key='league_var3')
        with col2:
            gametype_choice = st.radio("What format are the games being played?", ('Best of 1', 'Best of 3', 'Best of 5'), key='player_stats')
        with col3:
            pos_var2 = st.selectbox('View specific position?', options = ['All', 'TOP', 'JNG', 'MID', 'ADC', 'SUP'], key = 'proj_posvar')
        with col4:
            team_var2 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'proj_teamvar')
            
    if league_choice3 == 'LCK/LPL':
        if gametype_choice == 'Best of 1':
          hold_display = lck_bo1
        elif gametype_choice == 'Best of 3':
          hold_display = lck_bo3
        elif gametype_choice == 'Best of 5':
          hold_display = lck_bo5
        display = hold_display.set_index('Player')
    elif league_choice3 == 'LCS':
        if gametype_choice == 'Best of 1':
          hold_display = lcs_bo1
        elif gametype_choice == 'Best of 3':
          hold_display = lcs_bo3
        elif gametype_choice == 'Best of 5':
          hold_display = lcs_bo5
        display = hold_display.set_index('Player')
    elif league_choice3 == 'LEC':
        if gametype_choice == 'Best of 1':
          hold_display = lec_bo1
        elif gametype_choice == 'Best of 3':
          hold_display = lec_bo3
        elif gametype_choice == 'Best of 5':
          hold_display = lec_bo5
        display = hold_display.set_index('Player')
    if team_var2:
          display = display[display['Team'].isin(team_var2)]
    if pos_var2 == 'All':
          display = display
    elif pos_var2 != 'All':
          display = display[display['Position'].str.contains(pos_var2)]
    st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=750, use_container_width = True)
    st.download_button(
        label="Export Baselines",
        data=convert_df_to_csv(display),
        file_name='LOL_Baselines_export.csv',
        mime='text/csv',
    )