Spaces:
Sleeping
Sleeping
from llama_index.core import VectorStoreIndex | |
from llama_index.core import StorageContext | |
from pinecone import Pinecone, ServerlessSpec | |
from llama_index.llms.openai import OpenAI | |
from llama_index.vector_stores.pinecone import PineconeVectorStore | |
from fastapi import HTTPException, status | |
from config import PINECONE_CONFIG | |
import os | |
import json | |
class IndexManager: | |
def __init__(self): | |
self.vector_index = None | |
self.index_name = "summarizer-semantic-index" | |
def _get_pinecone_client(self): | |
"""Initialize and return the Pinecone client.""" | |
# api_key = os.getenv("PINECONE_API_KEY") | |
api_key = PINECONE_CONFIG.PINECONE_API_KEY | |
if not api_key: | |
raise ValueError( | |
"Pinecone API key is missing. Please set it in environment variables." | |
) | |
return Pinecone(api_key=api_key) | |
def _create_pinecone_index(self, client): | |
"""Create Pinecone index if it doesn't already exist.""" | |
if self.index_name not in client.list_indexes().names(): | |
client.create_index( | |
name=self.index_name, | |
dimension=1536, | |
metric="cosine", | |
spec=ServerlessSpec(cloud="aws", region="us-east-1"), | |
) | |
return client.Index(self.index_name) | |
def _initialize_vector_store(self, pinecone_index): | |
"""Initialize and return the vector store with the Pinecone index.""" | |
vector_store = PineconeVectorStore(pinecone_index=pinecone_index) | |
return StorageContext.from_defaults(vector_store=vector_store) | |
def build_indexes(self, nodes): | |
"""Build vector and tree indexes from nodes.""" | |
try: | |
client = self._get_pinecone_client() | |
pinecone_index = self._create_pinecone_index(client) | |
storage_context = self._initialize_vector_store(pinecone_index) | |
self.vector_index = VectorStoreIndex(nodes, storage_context=storage_context) | |
self.vector_index.set_index_id("vector") | |
print(f"Vector Index ID: {self.vector_index.index_id}") | |
print("Vector Index created successfully.") | |
response = { | |
"status": "success", | |
"message": "Existing Vector Index loaded successfully.", | |
} | |
return json.dumps(response) | |
except HTTPException as http_exc: | |
raise http_exc # Re-raise HTTPExceptions to ensure FastAPI handles them | |
except Exception as e: | |
raise HTTPException( | |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, | |
detail=f"Error loading existing indexes: {str(e)}" | |
) | |
def load_existing_indexes(self): | |
"""Load existing indexes from Pinecone.""" | |
try: | |
client = self._get_pinecone_client() | |
pinecone_index = client.Index(self.index_name) | |
print(pinecone_index.describe_index_stats()) | |
vector_store = PineconeVectorStore(pinecone_index=pinecone_index) | |
retriever = VectorStoreIndex.from_vector_store(vector_store) | |
print("Existing Vector Index loaded successfully.") | |
return retriever | |
except Exception as e: | |
print(f"Error loading existing indexes: {e}") | |
raise |