|
import os |
|
import re |
|
import json |
|
import pandas as pd |
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
from PIL import ImageFile |
|
import logging |
|
|
|
|
|
logging.basicConfig( |
|
filename="output.log", |
|
level=logging.INFO, |
|
format="%(asctime)s - %(levelname)s - %(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S" |
|
) |
|
|
|
|
|
torch.hub.download_url_to_file('https://i.pinimg.com/originals/7f/5e/96/7f5e9657c08aae4bcd8bc8b0dcff720e.jpg', 'ejemplo1.jpg') |
|
torch.hub.download_url_to_file('https://i.pinimg.com/originals/c2/ce/e0/c2cee05624d5477ffcf2d34ca77b47d1.jpg', 'ejemplo2.jpg') |
|
|
|
|
|
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True, trust_repo=True) |
|
|
|
def to_json(results): |
|
detail = [] |
|
|
|
results_df = to_dataframe(results) |
|
|
|
for index, row in results_df.iterrows(): |
|
item = { |
|
"quantity": row['Cantidad'], |
|
"description": row['Especie'] |
|
} |
|
detail.append(item) |
|
|
|
data = { |
|
"image": results.files[0], |
|
"size": f"{results.s[2]}x{results.s[3]}", |
|
"detail": detail |
|
} |
|
|
|
return data, results_df |
|
|
|
def to_dataframe(results): |
|
labels_map = { |
|
'Aedes': "Aedes", |
|
'Mosquito': "Mosquito", |
|
'Mosca': "Mosca", |
|
} |
|
labels = list(labels_map.keys()) |
|
|
|
columns_name = {'class': 'Cantidad', 'name': 'Especie'} |
|
results_df = results.pandas().xyxy[0][['class','name']].groupby('name').count().reset_index().rename(columns=columns_name) |
|
results_df = pd.merge(pd.DataFrame(labels, columns=['Especie']), results_df, how='left', on='Especie').fillna(0) |
|
results_df['Cantidad'] = results_df['Cantidad'].astype(int) |
|
results_df['Especie'] = results_df['Especie'].map(labels_map) |
|
return results_df |
|
|
|
def yolo(size, iou, conf, im): |
|
try: |
|
'''Wrapper fn for gradio''' |
|
g = (int(size) / max(im.size)) |
|
im = im.resize(tuple(int(x * g) for x in im.size), Image.LANCZOS) |
|
|
|
model.iou = iou |
|
model.conf = conf |
|
|
|
results2 = model(im) |
|
results2.render() |
|
lista, lista2 = to_json(results2) |
|
logging.info(f"Imagen procesada satisfactoriamente: {lista}") |
|
return Image.fromarray(results2.ims[0]), lista2, lista |
|
except Exception as err: |
|
logging.error(f"Error durante la predicción: {err}") |
|
return None, None, None |
|
|
|
|
|
in1 = gr.inputs.Radio(['640', '1280'], label="Tamaño de la imagen", default='640', type='value') |
|
in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.25, label='NMS IoU threshold') |
|
in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umbral o threshold') |
|
in4 = gr.inputs.Image(type='pil', label="Original Image") |
|
|
|
out2 = gr.outputs.Image(type="pil", label="YOLOv5") |
|
out3 = gr.outputs.Dataframe(label="Cantidad_especie", headers=['Cantidad','Especie'], type="pandas") |
|
out4 = gr.outputs.JSON(label="JSON") |
|
|
|
title = 'Trampas Barceló' |
|
description = '<p><center>Sistemas de Desarrollado por Subsecretaría de Modernización del Municipio de Vicente López. Advertencia solo usar fotos provenientes de las trampas Barceló, no de celular o foto de internet.<img src="https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png" alt="logo" width="250"/></center></p>' |
|
|
|
article ="<p style='text-align: center'><a href='https://docs.google.com/presentation/d/1T5CdcLSzgRe8cQpoi_sPB4U170551NGOrZNykcJD0xU/edit?usp=sharing' target='_blank'>Para mas info, clik para ir al white paper</a></p><p style='text-align: center'><a href='https://drive.google.com/drive/folders/1owACN3HGIMo4zm2GQ_jf-OhGNeBVRS7l?usp=sharing ' target='_blank'>Google Colab Demo</a></p><p style='text-align: center'><a href='https://github.com/Municipalidad-de-Vicente-Lopez/Trampa_Barcelo' target='_blank'>Repo Github</a></p></center></p>" |
|
|
|
examples = [['640',0.25, 0.5,'ejemplo1.jpg'], ['640',0.25, 0.5,'ejemplo2.jpg']] |
|
|
|
iface = gr.Interface(yolo, |
|
inputs=[in1, in2, in3, in4], |
|
outputs=[out2,out3,out4], title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
iface.launch(enable_queue=True, debug=True, server_port=7860, server_name='0.0.0.0') |