MusIre's picture
Update app.py
e628f25 verified
raw
history blame
6.24 kB
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
num_rows = 20000
df = pd.read_csv('/emails.csv', on_bad_lines='skip', nrows=num_rows)
def get_message(Series: pd.Series):
result = pd.Series(index=Series.index)
for row, message in enumerate(Series):
message_words = message.split('\n')
del message_words[:15]
result.iloc[row] = ''.join(message_words).strip()
return result
def get_date(Series: pd.Series):
result = pd.Series(index=Series.index)
for row, message in enumerate(Series):
message_words = message.split('\n')
del message_words[0]
del message_words[1:]
result.iloc[row] = ''.join(message_words).strip()
result.iloc[row] = result.iloc[row].replace('Date: ', '')
print('Done parsing, converting to datetime format..')
return pd.to_datetime(result)
def get_sender_and_receiver(Series: pd.Series):
sender = pd.Series(index = Series.index)
recipient1 = pd.Series(index = Series.index)
recipient2 = pd.Series(index = Series.index)
recipient3 = pd.Series(index = Series.index)
for row,message in enumerate(Series):
message_words = message.split('\n')
sender[row] = message_words[2].replace('From: ', '')
recipient1[row] = message_words[3].replace('To: ', '')
recipient2[row] = message_words[10].replace('X-cc: ', '')
recipient3[row] = message_words[11].replace('X-bcc: ', '')
return sender, recipient1, recipient2, recipient3
def get_subject(Series: pd.Series):
result = pd.Series(index = Series.index)
for row, message in enumerate(Series):
message_words = message.split('\n')
message_words = message_words[4]
result[row] = message_words.replace('Subject: ', '')
return result
def get_folder(Series: pd.Series):
result = pd.Series(index = Series.index)
for row, message in enumerate(Series):
message_words = message.split('\n')
message_words = message_words[12]
result[row] = message_words.replace('X-Folder: ', '')
return result
df['text'] = get_message(df.message)
df['sender'], df['recipient1'], df['recipient2'], df['recipient3'] = get_sender_and_receiver(df.message)
df['Subject'] = get_subject(df.message)
df['folder'] = get_folder(df.message)
df['date'] = get_date(df.message)
df = df.drop(['message', 'file'], axis = 1)
df.head(100)
import chromadb
chroma_client = chromadb.Client()
collection = chroma_client.create_collection(name="emails")
df.loc[4, 'text']
for i in df.index:
collection.add(
documents = df.loc[i, 'text'],
metadatas = [{"sender": df.loc[i, 'sender'],
"recipient1": df.loc[i, 'recipient1'],
"recipient2": df.loc[i, 'recipient2'],
"recipient3": df.loc[i, 'recipient3'],
"subject": df.loc[i, 'Subject'],
"folder": df.loc[i, 'folder'],
"date": str(df.loc[i, 'date'])
}],
ids = str(i)
)
collection.get(
ids=["140"]
)
results = collection.query(
query_texts = ["this is a document"],
n_results = 2,
include = ['distances', 'metadatas', 'documents']
)
results
from chromadb.utils import embedding_functions
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="paraphrase-MiniLM-L3-v2")
collection_minilm = chroma_client.create_collection(name="emails_minilm", embedding_function=sentence_transformer_ef)
for i in df.index:
print(i)
collection_minilm.add(
documents = df.loc[i, 'text'],
metadatas = [{"sender": df.loc[i, 'sender'],
"recipient1": df.loc[i, 'recipient1'],
"recipient2": df.loc[i, 'recipient2'],
"recipient3": df.loc[i, 'recipient3'],
"subject": df.loc[i, 'Subject'],
"folder": df.loc[i, 'folder'],
"date": str(df.loc[i, 'date'])
}],
ids = str(i)
)
results = collection_minilm.query(
query_texts = ["this is a document"],
n_results = 2,
include = ['distances', 'metadatas', 'documents']
)
results
import gradio as gr
def query_chromadb(question,numberOfResults):
results = collection_minilm.query(
n_results = numberOfResults,
)
return results['documents'][0]
iface = gr.Interface(
fn=query_chromadb,
inputs=["text","number"],
outputs="text",
title="Email Dataset Interface",
description="Insert the question or the key word to find the topic correlated in the dataset"
)
iface.launch(share=True)
import ast
def create_output(dictionary, number):
dictionary_ids = str(dictionary['ids'])
dictionary_ids_clean = dictionary_ids.strip("[]")
dictionary_ids_clean = dictionary_ids_clean.replace("'", "")
dictionary_ids_list = dictionary_ids_clean.split(", ")
string_results = "";
for n in range(number):
t = collection_minilm.get(
ids=[dictionary_ids_list[n]]
)
id = str(t["ids"])
doc = str(t["documents"])
metadata = str(t["metadatas"])
dictionary_metadata = ast.literal_eval(metadata.strip("[]"))
string_results_old = string_results
string_temp = """---------------
SUBJECT: """ + dictionary_metadata['subject'] + """"
MESSAGE: """ + "\n" + doc + """
---------------"""
string_results = string_results_old + string_temp
return string_results
def query_chromadb_advanced(question,numberOfResults):
results = collection_minilm.query(
query_texts = question,
n_results = numberOfResults,
)
return create_output(results, numberOfResults)
result_advance = query_chromadb_advanced("bank", 4)
print(result_advance)
iface = gr.Interface(
fn=query_chromadb_advanced,
inputs=["text","number"],
outputs="text",
title="Email Dataset Interface",
description="Insert the question or the key word to find the topic correlated in the dataset"
)
iface.launch(share=True)