Spaces:
Running
Running
import os | |
import gradio as gr | |
import tempfile | |
from pathlib import Path | |
import base64 | |
import fitz # PyMuPDF - works on HF Spaces without additional dependencies | |
from PIL import Image | |
import io | |
# Import vectorstore and embeddings from langchain community package | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
# Text splitter to break large documents into manageable chunks | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# HF Inference client for multimodal model | |
from huggingface_hub import InferenceClient | |
# ββ Globals βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
index = None # FAISS index storing document embeddings | |
retriever = None # Retriever to fetch relevant chunks | |
current_pdf_name = None # Name of the currently loaded PDF | |
extracted_content = None # Combined text and image descriptions | |
extracted_images = [] # Store image paths for multimodal queries | |
# ββ Single Multimodal Model ββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# Using a single multimodal model that can handle both text and images | |
multimodal_client = InferenceClient(model="microsoft/Phi-3.5-vision-instruct") | |
# ββ Multimodal Embeddings ββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# Using CLIP-based embeddings that can handle both text and images | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/clip-ViT-B-32") | |
# Create temporary directories for processing | |
temp_dir = tempfile.mkdtemp() | |
figures_dir = os.path.join(temp_dir, "figures") | |
os.makedirs(figures_dir, exist_ok=True) | |
def encode_image_to_base64(image_path): | |
"""Convert image to base64 for API calls""" | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
def extract_images_from_pdf_pymupdf(pdf_path): | |
""" | |
Extract images from PDF using PyMuPDF (works on HF Spaces) | |
Args: | |
pdf_path: Path to the PDF file | |
Returns: | |
List of image paths and their descriptions | |
""" | |
extracted_images = [] | |
image_descriptions = [] | |
try: | |
# Open PDF with PyMuPDF | |
pdf_document = fitz.open(pdf_path) | |
for page_num in range(len(pdf_document)): | |
page = pdf_document.load_page(page_num) | |
image_list = page.get_images() | |
for img_index, img in enumerate(image_list): | |
# Get image data | |
xref = img[0] | |
pix = fitz.Pixmap(pdf_document, xref) | |
# Convert to PIL Image | |
if pix.n - pix.alpha < 4: # GRAY or RGB | |
img_data = pix.tobytes("png") | |
img_pil = Image.open(io.BytesIO(img_data)) | |
# Save image | |
image_filename = f"page_{page_num}_img_{img_index}.png" | |
image_path = os.path.join(figures_dir, image_filename) | |
img_pil.save(image_path) | |
# Analyze image with multimodal model | |
description = analyze_image_with_multimodal_model(image_path) | |
extracted_images.append(image_path) | |
image_descriptions.append(description) | |
pix = None # Free memory | |
pdf_document.close() | |
return extracted_images, image_descriptions | |
except Exception as e: | |
print(f"Error extracting images: {e}") | |
return [], [] | |
def analyze_image_with_multimodal_model(image_path): | |
""" | |
Analyze an extracted image using the multimodal model. | |
Args: | |
image_path: Path to the extracted image file | |
Returns: | |
Text description of the image content | |
""" | |
try: | |
# Encode image to base64 | |
image_base64 = encode_image_to_base64(image_path) | |
# Simple text-based prompt for HF Inference API | |
prompt = f"""Analyze this image and provide a detailed description. Include any text, data, charts, diagrams, tables, or important visual elements you can see. Be specific and comprehensive. | |
Image: [Image data provided] | |
Description:""" | |
# Use multimodal model for image analysis | |
# Note: Simplified for HF Spaces compatibility | |
response = multimodal_client.text_generation( | |
prompt=prompt, | |
max_new_tokens=200, | |
temperature=0.3 | |
) | |
description = response.strip() | |
return f"[IMAGE CONTENT]: {description}" | |
except Exception as e: | |
return f"[IMAGE CONTENT]: Could not analyze image - {str(e)}" | |
def process_pdf_multimodal(pdf_file): | |
""" | |
Process PDF using PyMuPDF (HF Spaces compatible). | |
""" | |
global current_pdf_name, index, retriever, extracted_content, extracted_images | |
if pdf_file is None: | |
return None, "β Please upload a PDF file.", gr.update(interactive=False) | |
current_pdf_name = os.path.basename(pdf_file.name) | |
try: | |
# Clear previous data | |
extracted_images.clear() | |
for file in os.listdir(figures_dir): | |
os.remove(os.path.join(figures_dir, file)) | |
# Extract text using PyMuPDF | |
pdf_document = fitz.open(pdf_file.name) | |
text_elements = [] | |
for page_num in range(len(pdf_document)): | |
page = pdf_document.load_page(page_num) | |
text = page.get_text() | |
if text.strip(): | |
text_elements.append(f"[PAGE {page_num + 1}]\n{text.strip()}") | |
pdf_document.close() | |
# Extract images using PyMuPDF | |
image_paths, image_descriptions = extract_images_from_pdf_pymupdf(pdf_file.name) | |
extracted_images.extend(image_paths) | |
# Combine all content | |
all_content = text_elements + image_descriptions | |
extracted_content = "\n\n".join(all_content) | |
if not extracted_content.strip(): | |
return current_pdf_name, "β No content could be extracted from the PDF.", gr.update(interactive=False) | |
# Split into chunks for embedding | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
add_start_index=True | |
) | |
chunks = text_splitter.split_text(extracted_content) | |
# Create FAISS index with multimodal embeddings | |
index = FAISS.from_texts(chunks, embeddings) | |
retriever = index.as_retriever(search_kwargs={"k": 3}) | |
# Status message | |
num_images = len(image_descriptions) | |
num_text_pages = len(text_elements) | |
status = f"β Processed '{current_pdf_name}' β {len(chunks)} chunks ({num_text_pages} pages, {num_images} images analyzed)" | |
return current_pdf_name, status, gr.update(interactive=True) | |
except Exception as e: | |
error_msg = f"β Error processing PDF: {str(e)}" | |
return current_pdf_name, error_msg, gr.update(interactive=False) | |
def ask_multimodal_question(pdf_name, question): | |
""" | |
Answer questions using the single multimodal model with retrieved context. | |
""" | |
global retriever, extracted_images | |
if index is None or retriever is None: | |
return "β Please upload and process a PDF first." | |
if not question.strip(): | |
return "β Please enter a question." | |
try: | |
# Retrieve relevant chunks | |
docs = retriever.get_relevant_documents(question) | |
context = "\n\n".join(doc.page_content for doc in docs) | |
# Create prompt for text generation | |
prompt = f"""You are an AI assistant analyzing a document that contains both text and visual elements. | |
RETRIEVED CONTEXT: | |
{context} | |
QUESTION: {question} | |
Please provide a comprehensive answer based on the retrieved context above. The context includes both textual information and descriptions of images, charts, tables, and other visual elements from the document. | |
If your answer references visual elements (charts, graphs, images, tables), mention that explicitly. Keep your response focused and informative. | |
ANSWER:""" | |
# Generate response with multimodal model | |
response = multimodal_client.text_generation( | |
prompt=prompt, | |
max_new_tokens=300, | |
temperature=0.5 | |
) | |
return response.strip() | |
except Exception as e: | |
return f"β Error generating answer: {str(e)}" | |
def generate_multimodal_summary(): | |
""" | |
Generate summary using the multimodal model. | |
""" | |
if not extracted_content: | |
return "β Please upload and process a PDF first." | |
try: | |
# Use first 4000 characters for summary | |
content_preview = extracted_content[:4000] | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": f"""Please provide a comprehensive summary of this document content. The content includes both textual information and descriptions of visual elements (images, charts, tables, diagrams). | |
DOCUMENT CONTENT: | |
{content_preview} | |
Create a well-structured summary that captures: | |
1. Main topics and key points from the text | |
2. Important information from visual elements (charts, images, tables) | |
3. Overall document purpose and conclusions | |
SUMMARY:""" | |
} | |
] | |
} | |
] | |
response = multimodal_client.chat_completion( | |
messages=messages, | |
max_tokens=250, | |
temperature=0.3 | |
) | |
return response["choices"][0]["message"]["content"].strip() | |
except Exception as e: | |
return f"β Error generating summary: {str(e)}" | |
def extract_multimodal_keywords(): | |
""" | |
Extract keywords using the multimodal model. | |
""" | |
if not extracted_content: | |
return "β Please upload and process a PDF first." | |
try: | |
content_preview = extracted_content[:3000] | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": f"""Analyze the following document content and extract 12-15 key terms, concepts, and important phrases. The content includes both text and descriptions of visual elements. | |
DOCUMENT CONTENT: | |
{content_preview} | |
Extract key terms that represent: | |
- Main topics and concepts | |
- Important technical terms | |
- Key findings or data points | |
- Visual elements mentioned (chart types, image subjects) | |
Format as a comma-separated list. | |
KEY TERMS:""" | |
} | |
] | |
} | |
] | |
response = multimodal_client.chat_completion( | |
messages=messages, | |
max_tokens=120, | |
temperature=0.3 | |
) | |
return response["choices"][0]["message"]["content"].strip() | |
except Exception as e: | |
return f"β Error extracting keywords: {str(e)}" | |
def clear_multimodal_interface(): | |
""" | |
Reset all global state and clear UI. | |
""" | |
global index, retriever, current_pdf_name, extracted_content, extracted_images | |
# Clear figures directory | |
try: | |
for file in os.listdir(figures_dir): | |
os.remove(os.path.join(figures_dir, file)) | |
except: | |
pass | |
# Reset globals | |
index = retriever = None | |
current_pdf_name = extracted_content = None | |
extracted_images.clear() | |
return None, "", gr.update(interactive=False) | |
# ββ Gradio UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue") | |
with gr.Blocks(theme=theme, css=""" | |
.container { border-radius: 10px; padding: 15px; } | |
.pdf-active { border-left: 3px solid #6366f1; padding-left: 10px; background-color: rgba(99,102,241,0.1); } | |
.footer { text-align: center; margin-top: 30px; font-size: 0.8em; color: #666; } | |
.main-title { | |
text-align: center; | |
font-size: 64px; | |
font-weight: bold; | |
margin-bottom: 20px; | |
} | |
.multimodal-badge { | |
background: linear-gradient(45deg, #6366f1, #8b5cf6); | |
color: white; | |
padding: 5px 15px; | |
border-radius: 20px; | |
font-size: 14px; | |
display: inline-block; | |
margin: 10px auto; | |
} | |
.model-info { | |
background: #f8fafc; | |
border: 1px solid #e2e8f0; | |
border-radius: 8px; | |
padding: 10px; | |
margin: 10px 0; | |
font-size: 12px; | |
color: #64748b; | |
} | |
""") as demo: | |
# Application title with multimodal badge | |
gr.Markdown("<div class='main-title'>Unified MultiModal RAG</div>") | |
gr.Markdown("<div style='text-align: center;'><span class='multimodal-badge'>π§ Single Model β’ Text + Vision</span></div>") | |
# Model information | |
gr.Markdown(""" | |
<div class='model-info'> | |
<strong>π€ Powered by:</strong> Microsoft Phi-3.5-Vision + CLIP Embeddings + PyMuPDF (HF Spaces Compatible) | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("## π Document Input") | |
pdf_display = gr.Textbox(label="Active Document", interactive=False, elem_classes="pdf-active") | |
pdf_file = gr.File(file_types=[".pdf"], type="filepath", label="Upload PDF (with images/charts)") | |
upload_button = gr.Button("π Process with Multimodal AI", variant="primary") | |
status_box = gr.Textbox(label="Processing Status", interactive=False) | |
with gr.Column(): | |
gr.Markdown("## β Ask Questions") | |
gr.Markdown("*Single AI model understands both text and visual content*") | |
question_input = gr.Textbox( | |
lines=3, | |
placeholder="Ask about text content, images, charts, tables, or any visual elements...", | |
interactive=False | |
) | |
ask_button = gr.Button("π Ask Multimodal AI", variant="primary") | |
answer_output = gr.Textbox(label="AI Response", lines=8, interactive=False) | |
# Analysis tools | |
with gr.Row(): | |
with gr.Column(): | |
summary_button = gr.Button("π Generate Summary", variant="secondary") | |
summary_output = gr.Textbox(label="Document Summary", lines=4, interactive=False) | |
with gr.Column(): | |
keywords_button = gr.Button("π·οΈ Extract Keywords", variant="secondary") | |
keywords_output = gr.Textbox(label="Key Terms", lines=4, interactive=False) | |
# Clear button | |
clear_button = gr.Button("ποΈ Clear All", variant="secondary") | |
gr.Markdown(""" | |
<div class='footer'> | |
<strong>Unified Multimodal Pipeline:</strong> One model handles text analysis, image understanding, and question answering<br> | |
Supports: Text β’ Images β’ Charts β’ Tables β’ Diagrams β’ Mixed Content Queries | |
</div> | |
""") | |
# Event bindings | |
upload_button.click( | |
process_pdf_multimodal, | |
[pdf_file], | |
[pdf_display, status_box, question_input] | |
) | |
ask_button.click( | |
ask_multimodal_question, | |
[pdf_display, question_input], | |
answer_output | |
) | |
summary_button.click(generate_multimodal_summary, [], summary_output) | |
keywords_button.click(extract_multimodal_keywords, [], keywords_output) | |
clear_button.click( | |
clear_multimodal_interface, | |
[], | |
[pdf_file, pdf_display, question_input] | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True, share=True) |