NCTCMumbai's picture
Upload 2583 files
18ddfe2 verified
raw
history blame
8.38 kB
# Lint as: python2, python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for decoder_builder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
from object_detection.builders import decoder_builder
from object_detection.core import standard_fields as fields
from object_detection.dataset_tools import seq_example_util
from object_detection.protos import input_reader_pb2
from object_detection.utils import dataset_util
from object_detection.utils import test_case
def _get_labelmap_path():
"""Returns an absolute path to label map file."""
parent_path = os.path.dirname(tf.resource_loader.get_data_files_path())
return os.path.join(parent_path, 'data',
'pet_label_map.pbtxt')
class DecoderBuilderTest(test_case.TestCase):
def _make_serialized_tf_example(self, has_additional_channels=False):
image_tensor_np = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
additional_channels_tensor_np = np.random.randint(
255, size=(4, 5, 1)).astype(np.uint8)
flat_mask = (4 * 5) * [1.0]
def graph_fn(image_tensor):
encoded_jpeg = tf.image.encode_jpeg(image_tensor)
return encoded_jpeg
encoded_jpeg = self.execute_cpu(graph_fn, [image_tensor_np])
encoded_additional_channels_jpeg = self.execute_cpu(
graph_fn, [additional_channels_tensor_np])
features = {
'image/source_id': dataset_util.bytes_feature('0'.encode()),
'image/encoded': dataset_util.bytes_feature(encoded_jpeg),
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/height': dataset_util.int64_feature(4),
'image/width': dataset_util.int64_feature(5),
'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]),
'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]),
'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]),
'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]),
'image/object/class/label': dataset_util.int64_list_feature([2]),
'image/object/mask': dataset_util.float_list_feature(flat_mask),
}
if has_additional_channels:
additional_channels_key = 'image/additional_channels/encoded'
features[additional_channels_key] = dataset_util.bytes_list_feature(
[encoded_additional_channels_jpeg] * 2)
example = tf.train.Example(features=tf.train.Features(feature=features))
return example.SerializeToString()
def _make_random_serialized_jpeg_images(self, num_frames, image_height,
image_width):
def graph_fn():
images = tf.cast(tf.random.uniform(
[num_frames, image_height, image_width, 3],
maxval=256,
dtype=tf.int32), dtype=tf.uint8)
images_list = tf.unstack(images, axis=0)
encoded_images = [tf.io.encode_jpeg(image) for image in images_list]
return encoded_images
return self.execute_cpu(graph_fn, [])
def _make_serialized_tf_sequence_example(self):
num_frames = 4
image_height = 20
image_width = 30
image_source_ids = [str(i) for i in range(num_frames)]
encoded_images = self._make_random_serialized_jpeg_images(
num_frames, image_height, image_width)
sequence_example_serialized = seq_example_util.make_sequence_example(
dataset_name='video_dataset',
video_id='video',
encoded_images=encoded_images,
image_height=image_height,
image_width=image_width,
image_source_ids=image_source_ids,
image_format='JPEG',
is_annotated=[[1], [1], [1], [1]],
bboxes=[
[[]], # Frame 0.
[[0., 0., 1., 1.]], # Frame 1.
[[0., 0., 1., 1.],
[0.1, 0.1, 0.2, 0.2]], # Frame 2.
[[]], # Frame 3.
],
label_strings=[
[], # Frame 0.
['Abyssinian'], # Frame 1.
['Abyssinian', 'american_bulldog'], # Frame 2.
[], # Frame 3
]).SerializeToString()
return sequence_example_serialized
def test_build_tf_record_input_reader(self):
input_reader_text_proto = 'tf_record_input_reader {}'
input_reader_proto = input_reader_pb2.InputReader()
text_format.Parse(input_reader_text_proto, input_reader_proto)
decoder = decoder_builder.build(input_reader_proto)
serialized_seq_example = self._make_serialized_tf_example()
def graph_fn():
tensor_dict = decoder.decode(serialized_seq_example)
return (tensor_dict[fields.InputDataFields.image],
tensor_dict[fields.InputDataFields.groundtruth_classes],
tensor_dict[fields.InputDataFields.groundtruth_boxes])
(image, groundtruth_classes,
groundtruth_boxes) = self.execute_cpu(graph_fn, [])
self.assertEqual((4, 5, 3), image.shape)
self.assertAllEqual([2], groundtruth_classes)
self.assertEqual((1, 4), groundtruth_boxes.shape)
self.assertAllEqual([0.0, 0.0, 1.0, 1.0], groundtruth_boxes[0])
def test_build_tf_record_input_reader_sequence_example(self):
label_map_path = _get_labelmap_path()
input_reader_text_proto = """
input_type: TF_SEQUENCE_EXAMPLE
tf_record_input_reader {}
"""
input_reader_proto = input_reader_pb2.InputReader()
input_reader_proto.label_map_path = label_map_path
text_format.Parse(input_reader_text_proto, input_reader_proto)
serialized_seq_example = self._make_serialized_tf_sequence_example()
def graph_fn():
decoder = decoder_builder.build(input_reader_proto)
tensor_dict = decoder.decode(serialized_seq_example)
return (tensor_dict[fields.InputDataFields.image],
tensor_dict[fields.InputDataFields.groundtruth_classes],
tensor_dict[fields.InputDataFields.groundtruth_boxes],
tensor_dict[fields.InputDataFields.num_groundtruth_boxes])
(actual_image, actual_groundtruth_classes, actual_groundtruth_boxes,
actual_num_groundtruth_boxes) = self.execute_cpu(graph_fn, [])
expected_groundtruth_classes = [[-1, -1], [1, -1], [1, 2], [-1, -1]]
expected_groundtruth_boxes = [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]],
[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]],
[[0.0, 0.0, 1.0, 1.0], [0.1, 0.1, 0.2, 0.2]],
[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]]
expected_num_groundtruth_boxes = [0, 1, 2, 0]
# Sequence example images are encoded.
self.assertEqual((4,), actual_image.shape)
self.assertAllEqual(expected_groundtruth_classes,
actual_groundtruth_classes)
self.assertAllClose(expected_groundtruth_boxes,
actual_groundtruth_boxes)
self.assertAllClose(
expected_num_groundtruth_boxes, actual_num_groundtruth_boxes)
def test_build_tf_record_input_reader_and_load_instance_masks(self):
input_reader_text_proto = """
load_instance_masks: true
tf_record_input_reader {}
"""
input_reader_proto = input_reader_pb2.InputReader()
text_format.Parse(input_reader_text_proto, input_reader_proto)
decoder = decoder_builder.build(input_reader_proto)
serialized_seq_example = self._make_serialized_tf_example()
def graph_fn():
tensor_dict = decoder.decode(serialized_seq_example)
return tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
masks = self.execute_cpu(graph_fn, [])
self.assertAllEqual((1, 4, 5), masks.shape)
if __name__ == '__main__':
tf.test.main()