|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for object_detection.utils.shape_utils.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import tensorflow.compat.v1 as tf |
|
|
|
from object_detection.utils import shape_utils |
|
from object_detection.utils import test_case |
|
|
|
|
|
class UtilTest(test_case.TestCase): |
|
|
|
def test_pad_tensor_using_integer_input(self): |
|
|
|
print('........pad tensor using interger input.') |
|
def graph_fn(): |
|
t1 = tf.constant([1], dtype=tf.int32) |
|
pad_t1 = shape_utils.pad_tensor(t1, 2) |
|
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) |
|
pad_t2 = shape_utils.pad_tensor(t2, 2) |
|
|
|
return pad_t1, pad_t2 |
|
|
|
pad_t1_result, pad_t2_result = self.execute(graph_fn, []) |
|
|
|
self.assertAllEqual([1, 0], pad_t1_result) |
|
self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result) |
|
|
|
def test_pad_tensor_using_tensor_input(self): |
|
|
|
def graph_fn(): |
|
t1 = tf.constant([1], dtype=tf.int32) |
|
pad_t1 = shape_utils.pad_tensor(t1, tf.constant(2)) |
|
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) |
|
pad_t2 = shape_utils.pad_tensor(t2, tf.constant(2)) |
|
|
|
return pad_t1, pad_t2 |
|
|
|
pad_t1_result, pad_t2_result = self.execute(graph_fn, []) |
|
self.assertAllEqual([1, 0], pad_t1_result) |
|
self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result) |
|
|
|
def test_clip_tensor_using_integer_input(self): |
|
|
|
def graph_fn(): |
|
t1 = tf.constant([1, 2, 3], dtype=tf.int32) |
|
clip_t1 = shape_utils.clip_tensor(t1, 2) |
|
t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) |
|
clip_t2 = shape_utils.clip_tensor(t2, 2) |
|
|
|
self.assertEqual(2, clip_t1.get_shape()[0]) |
|
self.assertEqual(2, clip_t2.get_shape()[0]) |
|
|
|
return clip_t1, clip_t2 |
|
|
|
clip_t1_result, clip_t2_result = self.execute(graph_fn, []) |
|
self.assertAllEqual([1, 2], clip_t1_result) |
|
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result) |
|
|
|
def test_clip_tensor_using_tensor_input(self): |
|
|
|
def graph_fn(): |
|
t1 = tf.constant([1, 2, 3], dtype=tf.int32) |
|
clip_t1 = shape_utils.clip_tensor(t1, tf.constant(2)) |
|
t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) |
|
clip_t2 = shape_utils.clip_tensor(t2, tf.constant(2)) |
|
|
|
return clip_t1, clip_t2 |
|
|
|
clip_t1_result, clip_t2_result = self.execute(graph_fn, []) |
|
self.assertAllEqual([1, 2], clip_t1_result) |
|
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result) |
|
|
|
def test_pad_or_clip_tensor_using_integer_input(self): |
|
|
|
def graph_fn(): |
|
t1 = tf.constant([1], dtype=tf.int32) |
|
tt1 = shape_utils.pad_or_clip_tensor(t1, 2) |
|
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) |
|
tt2 = shape_utils.pad_or_clip_tensor(t2, 2) |
|
|
|
t3 = tf.constant([1, 2, 3], dtype=tf.int32) |
|
tt3 = shape_utils.clip_tensor(t3, 2) |
|
t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) |
|
tt4 = shape_utils.clip_tensor(t4, 2) |
|
|
|
self.assertEqual(2, tt1.get_shape()[0]) |
|
self.assertEqual(2, tt2.get_shape()[0]) |
|
self.assertEqual(2, tt3.get_shape()[0]) |
|
self.assertEqual(2, tt4.get_shape()[0]) |
|
|
|
return tt1, tt2, tt3, tt4 |
|
|
|
tt1_result, tt2_result, tt3_result, tt4_result = self.execute(graph_fn, []) |
|
self.assertAllEqual([1, 0], tt1_result) |
|
self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result) |
|
self.assertAllEqual([1, 2], tt3_result) |
|
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result) |
|
|
|
def test_pad_or_clip_tensor_using_tensor_input(self): |
|
|
|
def graph_fn(): |
|
t1 = tf.constant([1], dtype=tf.int32) |
|
tt1 = shape_utils.pad_or_clip_tensor(t1, tf.constant(2)) |
|
t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) |
|
tt2 = shape_utils.pad_or_clip_tensor(t2, tf.constant(2)) |
|
|
|
t3 = tf.constant([1, 2, 3], dtype=tf.int32) |
|
tt3 = shape_utils.clip_tensor(t3, tf.constant(2)) |
|
t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) |
|
tt4 = shape_utils.clip_tensor(t4, tf.constant(2)) |
|
|
|
return tt1, tt2, tt3, tt4 |
|
|
|
tt1_result, tt2_result, tt3_result, tt4_result = self.execute(graph_fn, []) |
|
self.assertAllEqual([1, 0], tt1_result) |
|
self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result) |
|
self.assertAllEqual([1, 2], tt3_result) |
|
self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result) |
|
|
|
def test_combined_static_dynamic_shape(self): |
|
|
|
for n in [2, 3, 4]: |
|
tensor = tf.zeros((n, 2, 3)) |
|
combined_shape = shape_utils.combined_static_and_dynamic_shape( |
|
tensor) |
|
self.assertListEqual(combined_shape[1:], [2, 3]) |
|
|
|
def test_pad_or_clip_nd_tensor(self): |
|
|
|
def graph_fn(input_tensor): |
|
output_tensor = shape_utils.pad_or_clip_nd( |
|
input_tensor, [None, 3, 5, tf.constant(6)]) |
|
|
|
return output_tensor |
|
|
|
for n in [2, 3, 4, 5]: |
|
input_np = np.zeros((n, 5, 4, 7)) |
|
output_tensor_np = self.execute(graph_fn, [input_np]) |
|
self.assertAllEqual(output_tensor_np.shape[1:], [3, 5, 6]) |
|
|
|
|
|
class StaticOrDynamicMapFnTest(test_case.TestCase): |
|
|
|
def test_with_dynamic_shape(self): |
|
|
|
def fn(input_tensor): |
|
return tf.reduce_sum(input_tensor) |
|
|
|
def graph_fn(input_tensor): |
|
return shape_utils.static_or_dynamic_map_fn(fn, input_tensor) |
|
|
|
|
|
|
|
result1 = self.execute( |
|
graph_fn, [np.array([[1, 2], [3, 1], [0, 4]]),]) |
|
result2 = self.execute( |
|
graph_fn, [np.array([[-1, 1], [0, 9]]),]) |
|
self.assertAllEqual(result1, [3, 4, 4]) |
|
self.assertAllEqual(result2, [0, 9]) |
|
|
|
def test_with_static_shape(self): |
|
def fn(input_tensor): |
|
return tf.reduce_sum(input_tensor) |
|
|
|
def graph_fn(): |
|
input_tensor = tf.constant([[1, 2], [3, 1], [0, 4]], dtype=tf.float32) |
|
return shape_utils.static_or_dynamic_map_fn(fn, input_tensor) |
|
|
|
result = self.execute(graph_fn, []) |
|
self.assertAllEqual(result, [3, 4, 4]) |
|
|
|
def test_with_multiple_dynamic_shapes(self): |
|
def fn(elems): |
|
input_tensor, scalar_index_tensor = elems |
|
return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), []) |
|
|
|
def graph_fn(input_tensor, scalar_index_tensor): |
|
map_fn_output = shape_utils.static_or_dynamic_map_fn( |
|
fn, [input_tensor, scalar_index_tensor], dtype=tf.float32) |
|
return map_fn_output |
|
|
|
|
|
|
|
|
|
result1 = self.execute( |
|
graph_fn, [ |
|
np.array([[1, 2, 3], [4, 5, -1], [0, 6, 9]]), |
|
np.array([[0], [2], [1]]), |
|
]) |
|
result2 = self.execute( |
|
graph_fn, [ |
|
np.array([[-1, 1, 0], [3, 9, 30]]), |
|
np.array([[1], [0]]) |
|
]) |
|
self.assertAllEqual(result1, [1, -1, 6]) |
|
self.assertAllEqual(result2, [1, 3]) |
|
|
|
def test_with_multiple_static_shapes(self): |
|
def fn(elems): |
|
input_tensor, scalar_index_tensor = elems |
|
return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), []) |
|
|
|
def graph_fn(): |
|
input_tensor = tf.constant([[1, 2, 3], [4, 5, -1], [0, 6, 9]], |
|
dtype=tf.float32) |
|
scalar_index_tensor = tf.constant([[0], [2], [1]], dtype=tf.int32) |
|
map_fn_output = shape_utils.static_or_dynamic_map_fn( |
|
fn, [input_tensor, scalar_index_tensor], dtype=tf.float32) |
|
return map_fn_output |
|
|
|
result = self.execute(graph_fn, []) |
|
self.assertAllEqual(result, [1, -1, 6]) |
|
|
|
def test_fails_with_nested_input(self): |
|
def fn(input_tensor): |
|
return input_tensor |
|
input_tensor1 = tf.constant([1]) |
|
input_tensor2 = tf.constant([2]) |
|
with self.assertRaisesRegexp( |
|
ValueError, '`elems` must be a Tensor or list of Tensors.'): |
|
shape_utils.static_or_dynamic_map_fn( |
|
fn, [input_tensor1, [input_tensor2]], dtype=tf.float32) |
|
|
|
|
|
class CheckMinImageShapeTest(test_case.TestCase): |
|
|
|
def test_check_min_image_dim_static_shape(self): |
|
input_tensor = tf.constant(np.zeros([1, 42, 42, 3])) |
|
_ = shape_utils.check_min_image_dim(33, input_tensor) |
|
|
|
with self.assertRaisesRegexp( |
|
ValueError, 'image size must be >= 64 in both height and width.'): |
|
_ = shape_utils.check_min_image_dim(64, input_tensor) |
|
|
|
def test_check_min_image_dim_dynamic_shape(self): |
|
|
|
def graph_fn(input_tensor): |
|
return shape_utils.check_min_image_dim(33, input_tensor) |
|
|
|
self.execute(graph_fn, |
|
[np.zeros([1, 42, 42, 3])]) |
|
self.assertRaises( |
|
ValueError, self.execute, |
|
graph_fn, np.zeros([1, 32, 32, 3]) |
|
) |
|
|
|
|
|
class AssertShapeEqualTest(test_case.TestCase): |
|
|
|
def test_unequal_static_shape_raises_exception(self): |
|
shape_a = tf.constant(np.zeros([4, 2, 2, 1])) |
|
shape_b = tf.constant(np.zeros([4, 2, 3, 1])) |
|
self.assertRaisesRegex( |
|
ValueError, 'Unequal shapes', |
|
shape_utils.assert_shape_equal, |
|
shape_utils.combined_static_and_dynamic_shape(shape_a), |
|
shape_utils.combined_static_and_dynamic_shape(shape_b) |
|
) |
|
|
|
def test_equal_static_shape_succeeds(self): |
|
|
|
def graph_fn(): |
|
shape_a = tf.constant(np.zeros([4, 2, 2, 1])) |
|
shape_b = tf.constant(np.zeros([4, 2, 2, 1])) |
|
|
|
shape_utils.assert_shape_equal( |
|
shape_utils.combined_static_and_dynamic_shape(shape_a), |
|
shape_utils.combined_static_and_dynamic_shape(shape_b)) |
|
|
|
return tf.constant(0) |
|
|
|
self.execute(graph_fn, []) |
|
|
|
def test_unequal_dynamic_shape_raises_tf_assert(self): |
|
|
|
def graph_fn(tensor_a, tensor_b): |
|
shape_utils.assert_shape_equal( |
|
shape_utils.combined_static_and_dynamic_shape(tensor_a), |
|
shape_utils.combined_static_and_dynamic_shape(tensor_b)) |
|
return tf.constant(0) |
|
|
|
self.assertRaises(ValueError, |
|
self.execute, graph_fn, |
|
[np.zeros([1, 2, 2, 3]), np.zeros([1, 4, 4, 3])]) |
|
|
|
def test_equal_dynamic_shape_succeeds(self): |
|
|
|
def graph_fn(tensor_a, tensor_b): |
|
shape_utils.assert_shape_equal( |
|
shape_utils.combined_static_and_dynamic_shape(tensor_a), |
|
shape_utils.combined_static_and_dynamic_shape(tensor_b) |
|
) |
|
|
|
return tf.constant(0) |
|
|
|
self.execute(graph_fn, [np.zeros([1, 2, 2, 3]), |
|
np.zeros([1, 2, 2, 3])]) |
|
|
|
def test_unequal_static_shape_along_first_dim_raises_exception(self): |
|
shape_a = tf.constant(np.zeros([4, 2, 2, 1])) |
|
shape_b = tf.constant(np.zeros([6, 2, 3, 1])) |
|
|
|
self.assertRaisesRegexp( |
|
ValueError, 'Unequal first dimension', |
|
shape_utils.assert_shape_equal_along_first_dimension, |
|
shape_utils.combined_static_and_dynamic_shape(shape_a), |
|
shape_utils.combined_static_and_dynamic_shape(shape_b) |
|
) |
|
|
|
def test_equal_static_shape_along_first_dim_succeeds(self): |
|
|
|
def graph_fn(): |
|
shape_a = tf.constant(np.zeros([4, 2, 2, 1])) |
|
shape_b = tf.constant(np.zeros([4, 7, 2])) |
|
shape_utils.assert_shape_equal_along_first_dimension( |
|
shape_utils.combined_static_and_dynamic_shape(shape_a), |
|
shape_utils.combined_static_and_dynamic_shape(shape_b)) |
|
return tf.constant(0) |
|
|
|
self.execute(graph_fn, []) |
|
|
|
def test_unequal_dynamic_shape_along_first_dim_raises_tf_assert(self): |
|
|
|
def graph_fn(tensor_a, tensor_b): |
|
shape_utils.assert_shape_equal_along_first_dimension( |
|
shape_utils.combined_static_and_dynamic_shape(tensor_a), |
|
shape_utils.combined_static_and_dynamic_shape(tensor_b)) |
|
|
|
return tf.constant(0) |
|
|
|
self.assertRaises(ValueError, |
|
self.execute, graph_fn, |
|
[np.zeros([1, 2, 2, 3]), np.zeros([2, 4, 3])]) |
|
|
|
def test_equal_dynamic_shape_along_first_dim_succeeds(self): |
|
|
|
def graph_fn(tensor_a, tensor_b): |
|
shape_utils.assert_shape_equal_along_first_dimension( |
|
shape_utils.combined_static_and_dynamic_shape(tensor_a), |
|
shape_utils.combined_static_and_dynamic_shape(tensor_b)) |
|
return tf.constant(0) |
|
|
|
self.execute(graph_fn, [np.zeros([5, 2, 2, 3]), np.zeros([5])]) |
|
|
|
|
|
class FlattenExpandDimensionTest(test_case.TestCase): |
|
|
|
def test_flatten_given_dims(self): |
|
|
|
def graph_fn(): |
|
inputs = tf.random_uniform([5, 2, 10, 10, 3]) |
|
actual_flattened = shape_utils.flatten_dimensions(inputs, first=1, last=3) |
|
expected_flattened = tf.reshape(inputs, [5, 20, 10, 3]) |
|
|
|
return actual_flattened, expected_flattened |
|
|
|
(actual_flattened_np, |
|
expected_flattened_np) = self.execute(graph_fn, []) |
|
self.assertAllClose(expected_flattened_np, actual_flattened_np) |
|
|
|
def test_raises_value_error_incorrect_dimensions(self): |
|
inputs = tf.random_uniform([5, 2, 10, 10, 3]) |
|
self.assertRaises(ValueError, |
|
shape_utils.flatten_dimensions, inputs, |
|
first=0, last=6) |
|
|
|
def test_flatten_first_two_dimensions(self): |
|
|
|
def graph_fn(): |
|
inputs = tf.constant( |
|
[ |
|
[[1, 2], [3, 4]], |
|
[[5, 6], [7, 8]], |
|
[[9, 10], [11, 12]] |
|
], dtype=tf.int32) |
|
flattened_tensor = shape_utils.flatten_first_n_dimensions( |
|
inputs, 2) |
|
return flattened_tensor |
|
|
|
flattened_tensor_out = self.execute(graph_fn, []) |
|
|
|
expected_output = [[1, 2], |
|
[3, 4], |
|
[5, 6], |
|
[7, 8], |
|
[9, 10], |
|
[11, 12]] |
|
self.assertAllEqual(expected_output, flattened_tensor_out) |
|
|
|
def test_expand_first_dimension(self): |
|
|
|
def graph_fn(): |
|
inputs = tf.constant( |
|
[ |
|
[1, 2], |
|
[3, 4], |
|
[5, 6], |
|
[7, 8], |
|
[9, 10], |
|
[11, 12] |
|
], dtype=tf.int32) |
|
dims = [3, 2] |
|
expanded_tensor = shape_utils.expand_first_dimension( |
|
inputs, dims) |
|
return expanded_tensor |
|
|
|
expanded_tensor_out = self.execute(graph_fn, []) |
|
|
|
expected_output = [ |
|
[[1, 2], [3, 4]], |
|
[[5, 6], [7, 8]], |
|
[[9, 10], [11, 12]]] |
|
self.assertAllEqual(expected_output, expanded_tensor_out) |
|
|
|
def test_expand_first_dimension_with_incompatible_dims(self): |
|
|
|
def graph_fn(): |
|
inputs = tf.constant( |
|
[ |
|
[[1, 2]], |
|
[[3, 4]], |
|
[[5, 6]], |
|
], dtype=tf.int32) |
|
dims = [3, 2] |
|
expanded_tensor = shape_utils.expand_first_dimension( |
|
inputs, dims) |
|
return expanded_tensor |
|
|
|
self.assertRaises(ValueError, self.execute, graph_fn, []) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|