NCTCMumbai's picture
Upload 2583 files
18ddfe2 verified
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The COCO-style evaluator.
The following snippet demonstrates the use of interfaces:
evaluator = COCOEvaluator(...)
for _ in range(num_evals):
for _ in range(num_batches_per_eval):
predictions, groundtruth = predictor.predict(...) # pop a batch.
evaluator.update(predictions, groundtruths) # aggregate internal stats.
evaluator.evaluate() # finish one full eval.
See also: https://github.com/cocodataset/cocoapi/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import atexit
import tempfile
import numpy as np
from absl import logging
from pycocotools import cocoeval
import six
import tensorflow as tf
from official.vision.detection.evaluation import coco_utils
from official.vision.detection.utils import class_utils
class MetricWrapper(object):
# This is only a wrapper for COCO metric and works on for numpy array. So it
# doesn't inherit from tf.keras.layers.Layer or tf.keras.metrics.Metric.
def __init__(self, evaluator):
self._evaluator = evaluator
def update_state(self, y_true, y_pred):
labels = tf.nest.map_structure(lambda x: x.numpy(), y_true)
outputs = tf.nest.map_structure(lambda x: x.numpy(), y_pred)
groundtruths = {}
predictions = {}
for key, val in outputs.items():
if isinstance(val, tuple):
val = np.concatenate(val)
predictions[key] = val
for key, val in labels.items():
if isinstance(val, tuple):
val = np.concatenate(val)
groundtruths[key] = val
self._evaluator.update(predictions, groundtruths)
def result(self):
return self._evaluator.evaluate()
def reset_states(self):
return self._evaluator.reset()
class COCOEvaluator(object):
"""COCO evaluation metric class."""
def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True):
"""Constructs COCO evaluation class.
The class provides the interface to metrics_fn in TPUEstimator. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the groundtruths and runs COCO evaluation.
Args:
annotation_file: a JSON file that stores annotations of the eval dataset.
If `annotation_file` is None, groundtruth annotations will be loaded
from the dataloader.
include_mask: a boolean to indicate whether or not to include the mask
eval.
need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
to absolute values (`image_info` is needed in this case).
"""
if annotation_file:
if annotation_file.startswith('gs://'):
_, local_val_json = tempfile.mkstemp(suffix='.json')
tf.io.gfile.remove(local_val_json)
tf.io.gfile.copy(annotation_file, local_val_json)
atexit.register(tf.io.gfile.remove, local_val_json)
else:
local_val_json = annotation_file
self._coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if include_mask else 'box'),
annotation_file=local_val_json)
self._annotation_file = annotation_file
self._include_mask = include_mask
self._metric_names = [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'ARmax1', 'ARmax10',
'ARmax100', 'ARs', 'ARm', 'ARl'
]
self._required_prediction_fields = [
'source_id', 'num_detections', 'detection_classes', 'detection_scores',
'detection_boxes'
]
self._need_rescale_bboxes = need_rescale_bboxes
if self._need_rescale_bboxes:
self._required_prediction_fields.append('image_info')
self._required_groundtruth_fields = [
'source_id', 'height', 'width', 'classes', 'boxes'
]
if self._include_mask:
mask_metric_names = ['mask_' + x for x in self._metric_names]
self._metric_names.extend(mask_metric_names)
self._required_prediction_fields.extend(['detection_masks'])
self._required_groundtruth_fields.extend(['masks'])
self.reset()
def reset(self):
"""Resets internal states for a fresh run."""
self._predictions = {}
if not self._annotation_file:
self._groundtruths = {}
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
logging.info('Thre is no annotation_file in COCOEvaluator.')
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
logging.info('Using annotation file: %s', self._annotation_file)
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
coco_eval.params.imgIds = image_ids
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
if self._include_mask:
mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
mcoco_eval.params.imgIds = image_ids
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
mask_coco_metrics = mcoco_eval.stats
if self._include_mask:
metrics = np.hstack((coco_metrics, mask_coco_metrics))
else:
metrics = coco_metrics
# Cleans up the internal variables in order for a fresh eval next time.
self.reset()
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
return metrics_dict
def _process_predictions(self, predictions):
image_scale = np.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2))
predictions['detection_boxes'] = (
predictions['detection_boxes'].astype(np.float32))
predictions['detection_boxes'] /= image_scale
if 'detection_outer_boxes' in predictions:
predictions['detection_outer_boxes'] = (
predictions['detection_outer_boxes'].astype(np.float32))
predictions['detection_outer_boxes'] /= image_scale
def update(self, predictions, groundtruths=None):
"""Update and aggregate detection results and groundtruth data.
Args:
predictions: a dictionary of numpy arrays including the fields below.
See different parsers under `../dataloader` for more details.
Required fields:
- source_id: a numpy array of int or string of shape [batch_size].
- image_info [if `need_rescale_bboxes` is True]: a numpy array of
float of shape [batch_size, 4, 2].
- num_detections: a numpy array of
int of shape [batch_size].
- detection_boxes: a numpy array of float of shape [batch_size, K, 4].
- detection_classes: a numpy array of int of shape [batch_size, K].
- detection_scores: a numpy array of float of shape [batch_size, K].
Optional fields:
- detection_masks: a numpy array of float of shape
[batch_size, K, mask_height, mask_width].
groundtruths: a dictionary of numpy arrays including the fields below.
See also different parsers under `../dataloader` for more details.
Required fields:
- source_id: a numpy array of int or string of shape [batch_size].
- height: a numpy array of int of shape [batch_size].
- width: a numpy array of int of shape [batch_size].
- num_detections: a numpy array of int of shape [batch_size].
- boxes: a numpy array of float of shape [batch_size, K, 4].
- classes: a numpy array of int of shape [batch_size, K].
Optional fields:
- is_crowds: a numpy array of int of shape [batch_size, K]. If the
field is absent, it is assumed that this instance is not crowd.
- areas: a numy array of float of shape [batch_size, K]. If the
field is absent, the area is calculated using either boxes or
masks depending on which one is available.
- masks: a numpy array of float of shape
[batch_size, K, mask_height, mask_width],
Raises:
ValueError: if the required prediction or groundtruth fields are not
present in the incoming `predictions` or `groundtruths`.
"""
for k in self._required_prediction_fields:
if k not in predictions:
raise ValueError(
'Missing the required key `{}` in predictions!'.format(k))
if self._need_rescale_bboxes:
self._process_predictions(predictions)
for k, v in six.iteritems(predictions):
if k not in self._predictions:
self._predictions[k] = [v]
else:
self._predictions[k].append(v)
if not self._annotation_file:
assert groundtruths
for k in self._required_groundtruth_fields:
if k not in groundtruths:
raise ValueError(
'Missing the required key `{}` in groundtruths!'.format(k))
for k, v in six.iteritems(groundtruths):
if k not in self._groundtruths:
self._groundtruths[k] = [v]
else:
self._groundtruths[k].append(v)
class ShapeMaskCOCOEvaluator(COCOEvaluator):
"""COCO evaluation metric class for ShapeMask."""
def __init__(self, mask_eval_class, **kwargs):
"""Constructs COCO evaluation class.
The class provides the interface to metrics_fn in TPUEstimator. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the groundtruths and runs COCO evaluation.
Args:
mask_eval_class: the set of classes for mask evaluation.
**kwargs: other keyword arguments passed to the parent class initializer.
"""
super(ShapeMaskCOCOEvaluator, self).__init__(**kwargs)
self._mask_eval_class = mask_eval_class
self._eval_categories = class_utils.coco_split_class_ids(mask_eval_class)
if mask_eval_class != 'all':
self._metric_names = [
x.replace('mask', 'novel_mask') for x in self._metric_names
]
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
coco_eval.params.imgIds = image_ids
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
if self._include_mask:
mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
mcoco_eval.params.imgIds = image_ids
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
if self._mask_eval_class == 'all':
metrics = np.hstack((coco_metrics, mcoco_eval.stats))
else:
mask_coco_metrics = mcoco_eval.category_stats
val_catg_idx = np.isin(mcoco_eval.params.catIds,
self._eval_categories)
# Gather the valid evaluation of the eval categories.
if np.any(val_catg_idx):
mean_val_metrics = []
for mid in range(len(self._metric_names) // 2):
mean_val_metrics.append(
np.nanmean(mask_coco_metrics[mid][val_catg_idx]))
mean_val_metrics = np.array(mean_val_metrics)
else:
mean_val_metrics = np.zeros(len(self._metric_names) // 2)
metrics = np.hstack((coco_metrics, mean_val_metrics))
else:
metrics = coco_metrics
# Cleans up the internal variables in order for a fresh eval next time.
self.reset()
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
return metrics_dict