NCTCMumbai's picture
Upload 2583 files
97b6013 verified
raw
history blame
13.6 kB
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
from absl import flags
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.benchmark import keras_benchmark
from official.benchmark import benchmark_wrappers
from official.benchmark.models import resnet_cifar_main
MIN_TOP_1_ACCURACY = 0.929
MAX_TOP_1_ACCURACY = 0.938
FLAGS = flags.FLAGS
CIFAR_DATA_DIR_NAME = 'cifar-10-batches-bin'
class Resnet56KerasAccuracy(keras_benchmark.KerasBenchmark):
"""Accuracy tests for ResNet56 Keras CIFAR-10."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
"""A benchmark class.
Args:
output_dir: directory where to output e.g. log files
root_data_dir: directory under which to look for dataset
**kwargs: arbitrary named arguments. This is needed to make the
constructor forward compatible in case PerfZero provides more
named arguments before updating the constructor.
"""
self.data_dir = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
flag_methods = [resnet_cifar_main.define_cifar_flags]
super(Resnet56KerasAccuracy, self).__init__(
output_dir=output_dir, flag_methods=flag_methods)
def _setup(self):
super(Resnet56KerasAccuracy, self)._setup()
FLAGS.use_tensor_lr = False
def benchmark_graph_1_gpu(self):
"""Test keras based model with Keras fit and distribution strategies."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128
FLAGS.train_epochs = 182
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
FLAGS.dtype = 'fp32'
self._run_and_report_benchmark()
def benchmark_1_gpu(self):
"""Test keras based model with eager and distribution strategies."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128
FLAGS.train_epochs = 182
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
FLAGS.dtype = 'fp32'
FLAGS.enable_eager = True
self._run_and_report_benchmark()
def benchmark_cpu(self):
"""Test keras based model on CPU."""
self._setup()
FLAGS.num_gpus = 0
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128
FLAGS.train_epochs = 182
FLAGS.model_dir = self._get_model_dir('benchmark_cpu')
FLAGS.dtype = 'fp32'
FLAGS.enable_eager = True
FLAGS.data_format = 'channels_last'
self._run_and_report_benchmark()
def benchmark_cpu_no_dist_strat(self):
"""Test keras based model on CPU without distribution strategies."""
self._setup()
FLAGS.num_gpus = 0
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128
FLAGS.train_epochs = 182
FLAGS.model_dir = self._get_model_dir('benchmark_cpu_no_dist_strat')
FLAGS.dtype = 'fp32'
FLAGS.enable_eager = True
FLAGS.distribution_strategy = 'off'
FLAGS.data_format = 'channels_last'
self._run_and_report_benchmark()
def benchmark_cpu_no_dist_strat_run_eagerly(self):
"""Test keras based model on CPU w/forced eager and no dist_strat."""
self._setup()
FLAGS.num_gpus = 0
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128
FLAGS.train_epochs = 182
FLAGS.model_dir = self._get_model_dir(
'benchmark_cpu_no_dist_strat_run_eagerly')
FLAGS.dtype = 'fp32'
FLAGS.enable_eager = True
FLAGS.run_eagerly = True
FLAGS.distribution_strategy = 'off'
FLAGS.data_format = 'channels_last'
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat(self):
"""Test keras based model with eager and no dist strat."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128
FLAGS.train_epochs = 182
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
FLAGS.dtype = 'fp32'
FLAGS.enable_eager = True
FLAGS.distribution_strategy = 'off'
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
"""Test keras based model w/forced eager and no dist_strat."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128
FLAGS.train_epochs = 182
FLAGS.model_dir = self._get_model_dir(
'benchmark_1_gpu_no_dist_strat_run_eagerly')
FLAGS.dtype = 'fp32'
FLAGS.enable_eager = True
FLAGS.run_eagerly = True
FLAGS.distribution_strategy = 'off'
self._run_and_report_benchmark()
def benchmark_graph_1_gpu_no_dist_strat(self):
"""Test keras based model with Keras fit but not distribution strategies."""
self._setup()
FLAGS.distribution_strategy = 'off'
FLAGS.num_gpus = 1
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128
FLAGS.train_epochs = 182
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
FLAGS.dtype = 'fp32'
self._run_and_report_benchmark()
def benchmark_2_gpu(self):
"""Test keras based model with eager and distribution strategies."""
self._setup()
FLAGS.num_gpus = 2
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128
FLAGS.train_epochs = 182
FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
FLAGS.dtype = 'fp32'
FLAGS.enable_eager = True
self._run_and_report_benchmark()
def benchmark_graph_2_gpu(self):
"""Test keras based model with Keras fit and distribution strategies."""
self._setup()
FLAGS.num_gpus = 2
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128
FLAGS.train_epochs = 182
FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
FLAGS.dtype = 'fp32'
self._run_and_report_benchmark()
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self):
start_time_sec = time.time()
stats = resnet_cifar_main.run(FLAGS)
wall_time_sec = time.time() - start_time_sec
super(Resnet56KerasAccuracy, self)._report_benchmark(
stats,
wall_time_sec,
top_1_min=MIN_TOP_1_ACCURACY,
top_1_max=MAX_TOP_1_ACCURACY,
total_batch_size=FLAGS.batch_size,
log_steps=100)
class Resnet56KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
"""Short performance tests for ResNet56 via Keras and CIFAR-10."""
def __init__(self, output_dir=None, default_flags=None):
flag_methods = [resnet_cifar_main.define_cifar_flags]
super(Resnet56KerasBenchmarkBase, self).__init__(
output_dir=output_dir,
flag_methods=flag_methods,
default_flags=default_flags)
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self):
start_time_sec = time.time()
stats = resnet_cifar_main.run(FLAGS)
wall_time_sec = time.time() - start_time_sec
super(Resnet56KerasBenchmarkBase, self)._report_benchmark(
stats,
wall_time_sec,
total_batch_size=FLAGS.batch_size,
log_steps=FLAGS.log_steps)
def benchmark_1_gpu(self):
"""Test 1 gpu."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.enable_eager = True
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_1_gpu_xla(self):
"""Test 1 gpu with xla enabled."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.enable_eager = True
FLAGS.run_eagerly = False
FLAGS.enable_xla = True
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_graph_1_gpu(self):
"""Test 1 gpu graph."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.enable_eager = False
FLAGS.run_eagerly = False
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat(self):
"""Test 1 gpu without distribution strategies."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.enable_eager = True
FLAGS.distribution_strategy = 'off'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_graph_1_gpu_no_dist_strat(self):
"""Test 1 gpu graph mode without distribution strategies."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.enable_eager = False
FLAGS.distribution_strategy = 'off'
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
"""Test 1 gpu without distribution strategy and forced eager."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.batch_size = 128
FLAGS.model_dir = self._get_model_dir(
'benchmark_1_gpu_no_dist_strat_run_eagerly')
FLAGS.dtype = 'fp32'
FLAGS.enable_eager = True
FLAGS.run_eagerly = True
FLAGS.distribution_strategy = 'off'
self._run_and_report_benchmark()
def benchmark_2_gpu(self):
"""Test 2 gpu."""
self._setup()
FLAGS.num_gpus = 2
FLAGS.enable_eager = True
FLAGS.run_eagerly = False
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
FLAGS.batch_size = 128 * 2 # 2 GPUs
self._run_and_report_benchmark()
def benchmark_graph_2_gpu(self):
"""Test 2 gpu graph mode."""
self._setup()
FLAGS.num_gpus = 2
FLAGS.enable_eager = False
FLAGS.run_eagerly = False
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
FLAGS.batch_size = 128 * 2 # 2 GPUs
self._run_and_report_benchmark()
def benchmark_cpu(self):
"""Test cpu."""
self._setup()
FLAGS.num_gpus = 0
FLAGS.enable_eager = True
FLAGS.model_dir = self._get_model_dir('benchmark_cpu')
FLAGS.batch_size = 128
FLAGS.data_format = 'channels_last'
self._run_and_report_benchmark()
def benchmark_graph_cpu(self):
"""Test cpu graph mode."""
self._setup()
FLAGS.num_gpus = 0
FLAGS.enable_eager = False
FLAGS.model_dir = self._get_model_dir('benchmark_graph_cpu')
FLAGS.batch_size = 128
FLAGS.data_format = 'channels_last'
self._run_and_report_benchmark()
def benchmark_cpu_no_dist_strat_run_eagerly(self):
"""Test cpu without distribution strategy and forced eager."""
self._setup()
FLAGS.num_gpus = 0
FLAGS.distribution_strategy = 'off'
FLAGS.enable_eager = True
FLAGS.run_eagerly = True
FLAGS.model_dir = self._get_model_dir(
'benchmark_cpu_no_dist_strat_run_eagerly')
FLAGS.batch_size = 128
FLAGS.data_format = 'channels_last'
self._run_and_report_benchmark()
def benchmark_cpu_no_dist_strat(self):
"""Test cpu without distribution strategies."""
self._setup()
FLAGS.num_gpus = 0
FLAGS.enable_eager = True
FLAGS.distribution_strategy = 'off'
FLAGS.model_dir = self._get_model_dir('benchmark_cpu_no_dist_strat')
FLAGS.batch_size = 128
FLAGS.data_format = 'channels_last'
self._run_and_report_benchmark()
def benchmark_graph_cpu_no_dist_strat(self):
"""Test cpu graph mode without distribution strategies."""
self._setup()
FLAGS.num_gpus = 0
FLAGS.enable_eager = False
FLAGS.distribution_strategy = 'off'
FLAGS.model_dir = self._get_model_dir('benchmark_graph_cpu_no_dist_strat')
FLAGS.batch_size = 128
FLAGS.data_format = 'channels_last'
self._run_and_report_benchmark()
class Resnet56KerasBenchmarkSynth(Resnet56KerasBenchmarkBase):
"""Synthetic benchmarks for ResNet56 and Keras."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
default_flags = {}
default_flags['skip_eval'] = True
default_flags['use_synthetic_data'] = True
default_flags['train_steps'] = 110
default_flags['log_steps'] = 10
default_flags['use_tensor_lr'] = False
super(Resnet56KerasBenchmarkSynth, self).__init__(
output_dir=output_dir, default_flags=default_flags)
class Resnet56KerasBenchmarkReal(Resnet56KerasBenchmarkBase):
"""Real data benchmarks for ResNet56 and Keras."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
default_flags = {}
default_flags['skip_eval'] = True
default_flags['data_dir'] = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
default_flags['train_steps'] = 110
default_flags['log_steps'] = 10
default_flags['use_tensor_lr'] = False
super(Resnet56KerasBenchmarkReal, self).__init__(
output_dir=output_dir, default_flags=default_flags)
if __name__ == '__main__':
tf.test.main()