HS_Code_AI-Explanability / models /official /benchmark /resnet_ctl_imagenet_benchmark.py
NCTCMumbai's picture
Upload 2583 files
97b6013 verified
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes CTL benchmarks and accuracy tests."""
# pylint: disable=line-too-long,g-bad-import-order
from __future__ import print_function
import os
import time
from absl import flags
import tensorflow as tf
from official.benchmark import owner_utils
from official.vision.image_classification.resnet import common
from official.vision.image_classification.resnet import resnet_ctl_imagenet_main
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
from official.benchmark import benchmark_wrappers
from official.utils.flags import core as flags_core
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
FLAGS = flags.FLAGS
class CtlBenchmark(PerfZeroBenchmark):
"""Base benchmark class with methods to simplify testing."""
def __init__(self, output_dir=None, default_flags=None, flag_methods=None):
self.default_flags = default_flags or {}
self.flag_methods = flag_methods or {}
super(CtlBenchmark, self).__init__(
output_dir=output_dir,
default_flags=self.default_flags,
flag_methods=self.flag_methods)
def _report_benchmark(self,
stats,
wall_time_sec,
top_1_max=None,
top_1_min=None,
total_batch_size=None,
log_steps=None,
warmup=1,
start_time_sec=None):
"""Report benchmark results by writing to local protobuf file.
Args:
stats: dict returned from keras models with known entries.
wall_time_sec: the during of the benchmark execution in seconds
top_1_max: highest passing level for top_1 accuracy.
top_1_min: lowest passing level for top_1 accuracy.
total_batch_size: Global batch-size.
log_steps: How often the log was created for stats['step_timestamp_log'].
warmup: number of entries in stats['step_timestamp_log'] to ignore.
start_time_sec: the start time of the program in seconds since epoch.
"""
metrics = []
if 'eval_acc' in stats:
metrics.append({
'name': 'accuracy_top_1',
'value': stats['eval_acc'],
'min_value': top_1_min,
'max_value': top_1_max
})
metrics.append({'name': 'eval_loss', 'value': stats['eval_loss']})
metrics.append({
'name': 'top_1_train_accuracy',
'value': stats['train_acc']
})
metrics.append({'name': 'train_loss', 'value': stats['train_loss']})
if (warmup and 'step_timestamp_log' in stats and
len(stats['step_timestamp_log']) > warmup + 1):
# first entry in the time_log is start of step 0. The rest of the
# entries are the end of each step recorded
time_log = stats['step_timestamp_log']
steps_elapsed = time_log[-1].batch_index - time_log[warmup].batch_index
time_elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
examples_per_sec = total_batch_size * (steps_elapsed / time_elapsed)
metrics.append({'name': 'exp_per_second', 'value': examples_per_sec})
if 'avg_exp_per_second' in stats:
metrics.append({
'name': 'avg_exp_per_second',
'value': stats['avg_exp_per_second']
})
if start_time_sec and 'step_timestamp_log' in stats:
time_log = stats['step_timestamp_log']
# time_log[0] is recorded at the beginning of the first step.
startup_time = time_log[0].timestamp - start_time_sec
metrics.append({'name': 'startup_time', 'value': startup_time})
flags_str = flags_core.get_nondefault_flags_as_str()
self.report_benchmark(
iters=-1,
wall_time=wall_time_sec,
metrics=metrics,
extras={'flags': flags_str})
class Resnet50CtlAccuracy(CtlBenchmark):
"""Benchmark accuracy tests for ResNet50 in CTL."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
"""A benchmark class.
Args:
output_dir: directory where to output e.g. log files
root_data_dir: directory under which to look for dataset
**kwargs: arbitrary named arguments. This is needed to make the
constructor forward compatible in case PerfZero provides more named
arguments before updating the constructor.
"""
flag_methods = [common.define_keras_flags]
self.data_dir = os.path.join(root_data_dir, 'imagenet')
super(Resnet50CtlAccuracy, self).__init__(
output_dir=output_dir, flag_methods=flag_methods)
def benchmark_8_gpu(self):
"""Test Keras model with eager, dist_strat and 8 GPUs."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128 * 8
FLAGS.train_epochs = 90
FLAGS.epochs_between_evals = 10
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
FLAGS.dtype = 'fp32'
self._run_and_report_benchmark()
def benchmark_8_gpu_fp16(self):
"""Test Keras model with eager, 8 GPUs with tf.keras mixed precision."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 256 * 8
FLAGS.train_epochs = 90
FLAGS.epochs_between_evals = 10
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
FLAGS.dtype = 'fp16'
self._run_and_report_benchmark()
def benchmark_8_gpu_amp(self):
"""Test Keras model with 8 GPUs and mixed precision via graph rewrite."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 256 * 8
FLAGS.train_epochs = 90
FLAGS.epochs_between_evals = 10
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
self._run_and_report_benchmark()
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self):
start_time_sec = time.time()
stats = resnet_ctl_imagenet_main.run(flags.FLAGS)
wall_time_sec = time.time() - start_time_sec
super(Resnet50CtlAccuracy, self)._report_benchmark(
stats,
wall_time_sec,
top_1_min=MIN_TOP_1_ACCURACY,
top_1_max=MAX_TOP_1_ACCURACY,
total_batch_size=FLAGS.batch_size,
log_steps=100,
start_time_sec=start_time_sec)
class Resnet50CtlBenchmarkBase(CtlBenchmark):
"""Resnet50 benchmarks."""
def __init__(self, output_dir=None, default_flags=None):
flag_methods = [common.define_keras_flags]
super(Resnet50CtlBenchmarkBase, self).__init__(
output_dir=output_dir,
flag_methods=flag_methods,
default_flags=default_flags)
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self):
start_time_sec = time.time()
stats = resnet_ctl_imagenet_main.run(FLAGS)
wall_time_sec = time.time() - start_time_sec
# Warmup means the number of logged step time entries that are excluded in
# performance report. Default to exclude 1 FLAGS.log_steps time.
super(Resnet50CtlBenchmarkBase, self)._report_benchmark(
stats,
wall_time_sec,
total_batch_size=FLAGS.batch_size,
log_steps=FLAGS.log_steps,
warmup=1,
start_time_sec=start_time_sec)
def benchmark_1_gpu_no_dist_strat(self):
"""Test Keras model with 1 GPU, no distribution strategy."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'off'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_1_gpu(self):
"""Test Keras model with 1 GPU."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_1_gpu_fp16(self):
"""Test Keras model with 1 GPU with tf.keras mixed precision."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
FLAGS.batch_size = 256
FLAGS.dtype = 'fp16'
self._run_and_report_benchmark()
def benchmark_1_gpu_amp(self):
"""Test Keras model with 1 GPU with automatic mixed precision."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
FLAGS.batch_size = 256
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
self._run_and_report_benchmark()
def benchmark_xla_1_gpu_amp(self):
"""Test Keras model with XLA and 1 GPU with automatic mixed precision."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
FLAGS.batch_size = 256
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
FLAGS.enable_xla = True
self._run_and_report_benchmark()
def benchmark_1_gpu_eager(self):
"""Test Keras model with 1 GPU in pure eager mode."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_eager')
FLAGS.batch_size = 120
FLAGS.use_tf_function = False
FLAGS.use_tf_while_loop = False
FLAGS.single_l2_loss_op = True
self._run_and_report_benchmark()
def benchmark_1_gpu_fp16_eager(self):
"""Test Keras model with 1 GPU with fp16 and pure eager mode."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_eager')
FLAGS.batch_size = 240
FLAGS.dtype = 'fp16'
FLAGS.use_tf_function = False
FLAGS.use_tf_while_loop = False
FLAGS.single_l2_loss_op = True
self._run_and_report_benchmark()
def benchmark_8_gpu(self):
"""Test Keras model with 8 GPUs."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
FLAGS.batch_size = 128 * 8 # 8 GPUs
self._run_and_report_benchmark()
def benchmark_8_gpu_fp16(self):
"""Test Keras model with 8 GPUs with tf.keras mixed precision."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.dtype = 'fp16'
self._run_and_report_benchmark()
def benchmark_8_gpu_eager(self):
"""Test Keras model with 8 GPUs, eager, fp32."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.use_tf_function = False
FLAGS.use_tf_while_loop = False
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_8_gpu_eager_fp16(self):
"""Test Keras model with 8 GPUs, eager, fp16."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.dtype = 'fp16'
FLAGS.use_tf_function = False
FLAGS.use_tf_while_loop = False
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager_fp16')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_8_gpu_amp(self):
"""Test Keras model with 8 GPUs with automatic mixed precision."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
self._run_and_report_benchmark()
def benchmark_xla_8_gpu_amp(self):
"""Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
FLAGS.enable_xla = True
self._run_and_report_benchmark()
def _set_df_common(self):
FLAGS.steps_per_loop = 500
FLAGS.train_epochs = 2
FLAGS.train_steps = None
FLAGS.skip_eval = True
FLAGS.enable_eager = True
FLAGS.enable_tensorboard = False
FLAGS.distribution_strategy = 'tpu'
FLAGS.report_accuracy_metrics = False
FLAGS.log_steps = 50
FLAGS.single_l2_loss_op = True
FLAGS.use_tf_function = True
FLAGS.enable_checkpoint_and_export = False
def benchmark_2x2_tpu_bf16(self):
self._setup()
self._set_df_common()
FLAGS.batch_size = 1024
FLAGS.dtype = 'bf16'
self._run_and_report_benchmark()
def benchmark_4x4_tpu_bf16(self):
self._setup()
self._set_df_common()
FLAGS.batch_size = 4096
FLAGS.dtype = 'bf16'
self._run_and_report_benchmark()
@owner_utils.Owner('tf-graph-compiler')
def benchmark_4x4_tpu_bf16_mlir(self):
"""Run resnet model on 4x4 with the MLIR Bridge enabled."""
self._setup()
self._set_df_common()
FLAGS.batch_size = 4096
FLAGS.dtype = 'bf16'
tf.config.experimental.enable_mlir_bridge()
self._run_and_report_benchmark()
def benchmark_8x16_tpu_bf16(self):
self._setup()
self._set_df_common()
FLAGS.batch_size = 8192
FLAGS.dtype = 'bf16'
self._run_and_report_benchmark()
def fill_report_object(self, stats):
super(Resnet50CtlBenchmarkBase, self).fill_report_object(
stats, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps)
class Resnet50CtlBenchmarkSynth(Resnet50CtlBenchmarkBase):
"""Resnet50 synthetic benchmark tests."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
def_flags = {}
def_flags['skip_eval'] = True
def_flags['use_synthetic_data'] = True
def_flags['train_steps'] = 110
def_flags['steps_per_loop'] = 20
def_flags['log_steps'] = 10
super(Resnet50CtlBenchmarkSynth, self).__init__(
output_dir=output_dir, default_flags=def_flags)
class Resnet50CtlBenchmarkReal(Resnet50CtlBenchmarkBase):
"""Resnet50 real data benchmark tests."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
def_flags = {}
def_flags['skip_eval'] = True
def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
def_flags['train_steps'] = 110
def_flags['steps_per_loop'] = 20
def_flags['log_steps'] = 10
super(Resnet50CtlBenchmarkReal, self).__init__(
output_dir=output_dir, default_flags=def_flags)
if __name__ == '__main__':
tf.test.main()