NCTCMumbai's picture
Upload 2583 files
97b6013 verified
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Multi-head BERT encoder network with classification heads.
Includes configurations and instantiation methods.
"""
from typing import List, Optional, Text
import dataclasses
import tensorflow as tf
from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.configs import encoders
from official.nlp.modeling import layers
from official.nlp.modeling.models import bert_pretrainer
@dataclasses.dataclass
class ClsHeadConfig(base_config.Config):
inner_dim: int = 0
num_classes: int = 2
activation: Optional[Text] = "tanh"
dropout_rate: float = 0.0
cls_token_idx: int = 0
name: Optional[Text] = None
@dataclasses.dataclass
class BertPretrainerConfig(base_config.Config):
"""BERT encoder configuration."""
num_masked_tokens: int = 76
encoder: encoders.TransformerEncoderConfig = (
encoders.TransformerEncoderConfig())
cls_heads: List[ClsHeadConfig] = dataclasses.field(default_factory=list)
def instantiate_classification_heads_from_cfgs(
cls_head_configs: List[ClsHeadConfig]) -> List[layers.ClassificationHead]:
return [
layers.ClassificationHead(**cfg.as_dict()) for cfg in cls_head_configs
] if cls_head_configs else []
def instantiate_bertpretrainer_from_cfg(
config: BertPretrainerConfig,
encoder_network: Optional[tf.keras.Model] = None
) -> bert_pretrainer.BertPretrainerV2:
"""Instantiates a BertPretrainer from the config."""
encoder_cfg = config.encoder
if encoder_network is None:
encoder_network = encoders.instantiate_encoder_from_cfg(encoder_cfg)
return bert_pretrainer.BertPretrainerV2(
config.num_masked_tokens,
mlm_activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
mlm_initializer=tf.keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
encoder_network=encoder_network,
classification_heads=instantiate_classification_heads_from_cfgs(
config.cls_heads))
@dataclasses.dataclass
class BertPretrainDataConfig(cfg.DataConfig):
"""Data config for BERT pretraining task (tasks/masked_lm)."""
input_path: str = ""
global_batch_size: int = 512
is_training: bool = True
seq_length: int = 512
max_predictions_per_seq: int = 76
use_next_sentence_label: bool = True
use_position_id: bool = False
@dataclasses.dataclass
class BertPretrainEvalDataConfig(BertPretrainDataConfig):
"""Data config for the eval set in BERT pretraining task (tasks/masked_lm)."""
input_path: str = ""
global_batch_size: int = 512
is_training: bool = False
@dataclasses.dataclass
class SentencePredictionDataConfig(cfg.DataConfig):
"""Data config for sentence prediction task (tasks/sentence_prediction)."""
input_path: str = ""
global_batch_size: int = 32
is_training: bool = True
seq_length: int = 128
@dataclasses.dataclass
class SentencePredictionDevDataConfig(cfg.DataConfig):
"""Dev Data config for sentence prediction (tasks/sentence_prediction)."""
input_path: str = ""
global_batch_size: int = 32
is_training: bool = False
seq_length: int = 128
drop_remainder: bool = False
@dataclasses.dataclass
class QADataConfig(cfg.DataConfig):
"""Data config for question answering task (tasks/question_answering)."""
input_path: str = ""
global_batch_size: int = 48
is_training: bool = True
seq_length: int = 384
@dataclasses.dataclass
class QADevDataConfig(cfg.DataConfig):
"""Dev Data config for queston answering (tasks/question_answering)."""
input_path: str = ""
global_batch_size: int = 48
is_training: bool = False
seq_length: int = 384
drop_remainder: bool = False
@dataclasses.dataclass
class TaggingDataConfig(cfg.DataConfig):
"""Data config for tagging (tasks/tagging)."""
input_path: str = ""
global_batch_size: int = 48
is_training: bool = True
seq_length: int = 384
@dataclasses.dataclass
class TaggingDevDataConfig(cfg.DataConfig):
"""Dev Data config for tagging (tasks/tagging)."""
input_path: str = ""
global_batch_size: int = 48
is_training: bool = False
seq_length: int = 384
drop_remainder: bool = False