NCTCMumbai's picture
Upload 2583 files
97b6013 verified
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions to read, decode and pre-process input data for the Model.
"""
import collections
import functools
import tensorflow as tf
from tensorflow.contrib import slim
import inception_preprocessing
# Tuple to store input data endpoints for the Model.
# It has following fields (tensors):
# images: input images,
# shape [batch_size x H x W x 3];
# labels: ground truth label ids,
# shape=[batch_size x seq_length];
# labels_one_hot: labels in one-hot encoding,
# shape [batch_size x seq_length x num_char_classes];
InputEndpoints = collections.namedtuple(
'InputEndpoints', ['images', 'images_orig', 'labels', 'labels_one_hot'])
# A namedtuple to define a configuration for shuffled batch fetching.
# num_batching_threads: A number of parallel threads to fetch data.
# queue_capacity: a max number of elements in the batch shuffling queue.
# min_after_dequeue: a min number elements in the queue after a dequeue, used
# to ensure a level of mixing of elements.
ShuffleBatchConfig = collections.namedtuple('ShuffleBatchConfig', [
'num_batching_threads', 'queue_capacity', 'min_after_dequeue'
])
DEFAULT_SHUFFLE_CONFIG = ShuffleBatchConfig(
num_batching_threads=8, queue_capacity=3000, min_after_dequeue=1000)
def augment_image(image):
"""Augmentation the image with a random modification.
Args:
image: input Tensor image of rank 3, with the last dimension
of size 3.
Returns:
Distorted Tensor image of the same shape.
"""
with tf.variable_scope('AugmentImage'):
height = image.get_shape().dims[0].value
width = image.get_shape().dims[1].value
# Random crop cut from the street sign image, resized to the same size.
# Assures that the crop is covers at least 0.8 area of the input image.
bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(
tf.shape(image),
bounding_boxes=tf.zeros([0, 0, 4]),
min_object_covered=0.8,
aspect_ratio_range=[0.8, 1.2],
area_range=[0.8, 1.0],
use_image_if_no_bounding_boxes=True)
distorted_image = tf.slice(image, bbox_begin, bbox_size)
# Randomly chooses one of the 4 interpolation methods
distorted_image = inception_preprocessing.apply_with_random_selector(
distorted_image,
lambda x, method: tf.image.resize_images(x, [height, width], method),
num_cases=4)
distorted_image.set_shape([height, width, 3])
# Color distortion
distorted_image = inception_preprocessing.apply_with_random_selector(
distorted_image,
functools.partial(
inception_preprocessing.distort_color, fast_mode=False),
num_cases=4)
distorted_image = tf.clip_by_value(distorted_image, -1.5, 1.5)
return distorted_image
def central_crop(image, crop_size):
"""Returns a central crop for the specified size of an image.
Args:
image: A tensor with shape [height, width, channels]
crop_size: A tuple (crop_width, crop_height)
Returns:
A tensor of shape [crop_height, crop_width, channels].
"""
with tf.variable_scope('CentralCrop'):
target_width, target_height = crop_size
image_height, image_width = tf.shape(image)[0], tf.shape(image)[1]
assert_op1 = tf.Assert(
tf.greater_equal(image_height, target_height),
['image_height < target_height', image_height, target_height])
assert_op2 = tf.Assert(
tf.greater_equal(image_width, target_width),
['image_width < target_width', image_width, target_width])
with tf.control_dependencies([assert_op1, assert_op2]):
offset_width = tf.cast((image_width - target_width) / 2, tf.int32)
offset_height = tf.cast((image_height - target_height) / 2, tf.int32)
return tf.image.crop_to_bounding_box(image, offset_height, offset_width,
target_height, target_width)
def preprocess_image(image, augment=False, central_crop_size=None,
num_towers=4):
"""Normalizes image to have values in a narrow range around zero.
Args:
image: a [H x W x 3] uint8 tensor.
augment: optional, if True do random image distortion.
central_crop_size: A tuple (crop_width, crop_height).
num_towers: optional, number of shots of the same image in the input image.
Returns:
A float32 tensor of shape [H x W x 3] with RGB values in the required
range.
"""
with tf.variable_scope('PreprocessImage'):
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
if augment or central_crop_size:
if num_towers == 1:
images = [image]
else:
images = tf.split(value=image, num_or_size_splits=num_towers, axis=1)
if central_crop_size:
view_crop_size = (int(central_crop_size[0] / num_towers),
central_crop_size[1])
images = [central_crop(img, view_crop_size) for img in images]
if augment:
images = [augment_image(img) for img in images]
image = tf.concat(images, 1)
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.5)
return image
def get_data(dataset,
batch_size,
augment=False,
central_crop_size=None,
shuffle_config=None,
shuffle=True):
"""Wraps calls to DatasetDataProviders and shuffle_batch.
For more details about supported Dataset objects refer to datasets/fsns.py.
Args:
dataset: a slim.data.dataset.Dataset object.
batch_size: number of samples per batch.
augment: optional, if True does random image distortion.
central_crop_size: A CharLogittuple (crop_width, crop_height).
shuffle_config: A namedtuple ShuffleBatchConfig.
shuffle: if True use data shuffling.
Returns:
"""
if not shuffle_config:
shuffle_config = DEFAULT_SHUFFLE_CONFIG
provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
shuffle=shuffle,
common_queue_capacity=2 * batch_size,
common_queue_min=batch_size)
image_orig, label = provider.get(['image', 'label'])
image = preprocess_image(
image_orig, augment, central_crop_size, num_towers=dataset.num_of_views)
label_one_hot = slim.one_hot_encoding(label, dataset.num_char_classes)
images, images_orig, labels, labels_one_hot = (tf.train.shuffle_batch(
[image, image_orig, label, label_one_hot],
batch_size=batch_size,
num_threads=shuffle_config.num_batching_threads,
capacity=shuffle_config.queue_capacity,
min_after_dequeue=shuffle_config.min_after_dequeue))
return InputEndpoints(
images=images,
images_orig=images_orig,
labels=labels,
labels_one_hot=labels_one_hot)