|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for the metrics module.""" |
|
import contextlib |
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
import metrics |
|
|
|
|
|
class AccuracyTest(tf.test.TestCase): |
|
def setUp(self): |
|
tf.test.TestCase.setUp(self) |
|
self.rng = np.random.RandomState([11, 23, 50]) |
|
self.num_char_classes = 3 |
|
self.batch_size = 4 |
|
self.seq_length = 5 |
|
self.rej_char = 42 |
|
|
|
@contextlib.contextmanager |
|
def initialized_session(self): |
|
"""Wrapper for test session context manager with required initialization. |
|
|
|
Yields: |
|
A session object that should be used as a context manager. |
|
""" |
|
with self.cached_session() as sess: |
|
sess.run(tf.global_variables_initializer()) |
|
sess.run(tf.local_variables_initializer()) |
|
yield sess |
|
|
|
def _fake_labels(self): |
|
return self.rng.randint( |
|
low=0, |
|
high=self.num_char_classes, |
|
size=(self.batch_size, self.seq_length), |
|
dtype='int32') |
|
|
|
def _incorrect_copy(self, values, bad_indexes): |
|
incorrect = np.copy(values) |
|
incorrect[bad_indexes] = values[bad_indexes] + 1 |
|
return incorrect |
|
|
|
def test_sequence_accuracy_identical_samples(self): |
|
labels_tf = tf.convert_to_tensor(self._fake_labels()) |
|
|
|
accuracy_tf = metrics.sequence_accuracy(labels_tf, labels_tf, |
|
self.rej_char) |
|
with self.initialized_session() as sess: |
|
accuracy_np = sess.run(accuracy_tf) |
|
|
|
self.assertAlmostEqual(accuracy_np, 1.0) |
|
|
|
def test_sequence_accuracy_one_char_difference(self): |
|
ground_truth_np = self._fake_labels() |
|
ground_truth_tf = tf.convert_to_tensor(ground_truth_np) |
|
prediction_tf = tf.convert_to_tensor( |
|
self._incorrect_copy(ground_truth_np, bad_indexes=((0, 0)))) |
|
|
|
accuracy_tf = metrics.sequence_accuracy(prediction_tf, ground_truth_tf, |
|
self.rej_char) |
|
with self.initialized_session() as sess: |
|
accuracy_np = sess.run(accuracy_tf) |
|
|
|
|
|
self.assertAlmostEqual(accuracy_np, 1.0 - 1.0 / self.batch_size) |
|
|
|
def test_char_accuracy_one_char_difference_with_padding(self): |
|
ground_truth_np = self._fake_labels() |
|
ground_truth_tf = tf.convert_to_tensor(ground_truth_np) |
|
prediction_tf = tf.convert_to_tensor( |
|
self._incorrect_copy(ground_truth_np, bad_indexes=((0, 0)))) |
|
|
|
accuracy_tf = metrics.char_accuracy(prediction_tf, ground_truth_tf, |
|
self.rej_char) |
|
with self.initialized_session() as sess: |
|
accuracy_np = sess.run(accuracy_tf) |
|
|
|
chars_count = self.seq_length * self.batch_size |
|
self.assertAlmostEqual(accuracy_np, 1.0 - 1.0 / chars_count) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|