|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Contains different architectures for the different DSN parts. |
|
|
|
We define here the modules that can be used in the different parts of the DSN |
|
model. |
|
- shared encoder (dsn_cropped_linemod, dann_xxxx) |
|
- private encoder (default_encoder) |
|
- decoder (large_decoder, gtsrb_decoder, small_decoder) |
|
""" |
|
import tensorflow as tf |
|
|
|
|
|
import utils |
|
|
|
slim = tf.contrib.slim |
|
|
|
|
|
def default_batch_norm_params(is_training=False): |
|
"""Returns default batch normalization parameters for DSNs. |
|
|
|
Args: |
|
is_training: whether or not the model is training. |
|
|
|
Returns: |
|
a dictionary that maps batch norm parameter names (strings) to values. |
|
""" |
|
return { |
|
|
|
'decay': 0.5, |
|
|
|
'epsilon': 0.001, |
|
'is_training': is_training |
|
} |
|
|
|
|
|
|
|
|
|
|
|
def default_encoder(images, code_size, batch_norm_params=None, |
|
weight_decay=0.0): |
|
"""Encodes the given images to codes of the given size. |
|
|
|
Args: |
|
images: a tensor of size [batch_size, height, width, 1]. |
|
code_size: the number of hidden units in the code layer of the classifier. |
|
batch_norm_params: a dictionary that maps batch norm parameter names to |
|
values. |
|
weight_decay: the value for the weight decay coefficient. |
|
|
|
Returns: |
|
end_points: the code of the input. |
|
""" |
|
end_points = {} |
|
with slim.arg_scope( |
|
[slim.conv2d, slim.fully_connected], |
|
weights_regularizer=slim.l2_regularizer(weight_decay), |
|
activation_fn=tf.nn.relu, |
|
normalizer_fn=slim.batch_norm, |
|
normalizer_params=batch_norm_params): |
|
with slim.arg_scope([slim.conv2d], kernel_size=[5, 5], padding='SAME'): |
|
net = slim.conv2d(images, 32, scope='conv1') |
|
net = slim.max_pool2d(net, [2, 2], 2, scope='pool1') |
|
net = slim.conv2d(net, 64, scope='conv2') |
|
net = slim.max_pool2d(net, [2, 2], 2, scope='pool2') |
|
|
|
net = slim.flatten(net) |
|
end_points['flatten'] = net |
|
net = slim.fully_connected(net, code_size, scope='fc1') |
|
end_points['fc3'] = net |
|
return end_points |
|
|
|
|
|
|
|
|
|
|
|
def large_decoder(codes, |
|
height, |
|
width, |
|
channels, |
|
batch_norm_params=None, |
|
weight_decay=0.0): |
|
"""Decodes the codes to a fixed output size. |
|
|
|
Args: |
|
codes: a tensor of size [batch_size, code_size]. |
|
height: the height of the output images. |
|
width: the width of the output images. |
|
channels: the number of the output channels. |
|
batch_norm_params: a dictionary that maps batch norm parameter names to |
|
values. |
|
weight_decay: the value for the weight decay coefficient. |
|
|
|
Returns: |
|
recons: the reconstruction tensor of shape [batch_size, height, width, 3]. |
|
""" |
|
with slim.arg_scope( |
|
[slim.conv2d, slim.fully_connected], |
|
weights_regularizer=slim.l2_regularizer(weight_decay), |
|
activation_fn=tf.nn.relu, |
|
normalizer_fn=slim.batch_norm, |
|
normalizer_params=batch_norm_params): |
|
net = slim.fully_connected(codes, 600, scope='fc1') |
|
batch_size = net.get_shape().as_list()[0] |
|
net = tf.reshape(net, [batch_size, 10, 10, 6]) |
|
|
|
net = slim.conv2d(net, 32, [5, 5], scope='conv1_1') |
|
|
|
net = tf.image.resize_nearest_neighbor(net, (16, 16)) |
|
|
|
net = slim.conv2d(net, 32, [5, 5], scope='conv2_1') |
|
|
|
net = tf.image.resize_nearest_neighbor(net, (32, 32)) |
|
|
|
net = slim.conv2d(net, 32, [5, 5], scope='conv3_2') |
|
|
|
output_size = [height, width] |
|
net = tf.image.resize_nearest_neighbor(net, output_size) |
|
|
|
with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]): |
|
net = slim.conv2d(net, channels, activation_fn=None, scope='conv4_1') |
|
|
|
return net |
|
|
|
|
|
def gtsrb_decoder(codes, |
|
height, |
|
width, |
|
channels, |
|
batch_norm_params=None, |
|
weight_decay=0.0): |
|
"""Decodes the codes to a fixed output size. This decoder is specific to GTSRB |
|
|
|
Args: |
|
codes: a tensor of size [batch_size, 100]. |
|
height: the height of the output images. |
|
width: the width of the output images. |
|
channels: the number of the output channels. |
|
batch_norm_params: a dictionary that maps batch norm parameter names to |
|
values. |
|
weight_decay: the value for the weight decay coefficient. |
|
|
|
Returns: |
|
recons: the reconstruction tensor of shape [batch_size, height, width, 3]. |
|
|
|
Raises: |
|
ValueError: When the input code size is not 100. |
|
""" |
|
batch_size, code_size = codes.get_shape().as_list() |
|
if code_size != 100: |
|
raise ValueError('The code size used as an input to the GTSRB decoder is ' |
|
'expected to be 100.') |
|
|
|
with slim.arg_scope( |
|
[slim.conv2d, slim.fully_connected], |
|
weights_regularizer=slim.l2_regularizer(weight_decay), |
|
activation_fn=tf.nn.relu, |
|
normalizer_fn=slim.batch_norm, |
|
normalizer_params=batch_norm_params): |
|
net = codes |
|
net = tf.reshape(net, [batch_size, 10, 10, 1]) |
|
net = slim.conv2d(net, 32, [3, 3], scope='conv1_1') |
|
|
|
|
|
net = tf.image.resize_nearest_neighbor(net, [20, 20]) |
|
|
|
net = slim.conv2d(net, 32, [3, 3], scope='conv2_1') |
|
|
|
output_size = [height, width] |
|
|
|
net = tf.image.resize_nearest_neighbor(net, output_size) |
|
|
|
with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]): |
|
net = slim.conv2d(net, 16, scope='conv3_1') |
|
net = slim.conv2d(net, channels, activation_fn=None, scope='conv3_2') |
|
|
|
return net |
|
|
|
|
|
def small_decoder(codes, |
|
height, |
|
width, |
|
channels, |
|
batch_norm_params=None, |
|
weight_decay=0.0): |
|
"""Decodes the codes to a fixed output size. |
|
|
|
Args: |
|
codes: a tensor of size [batch_size, code_size]. |
|
height: the height of the output images. |
|
width: the width of the output images. |
|
channels: the number of the output channels. |
|
batch_norm_params: a dictionary that maps batch norm parameter names to |
|
values. |
|
weight_decay: the value for the weight decay coefficient. |
|
|
|
Returns: |
|
recons: the reconstruction tensor of shape [batch_size, height, width, 3]. |
|
""" |
|
with slim.arg_scope( |
|
[slim.conv2d, slim.fully_connected], |
|
weights_regularizer=slim.l2_regularizer(weight_decay), |
|
activation_fn=tf.nn.relu, |
|
normalizer_fn=slim.batch_norm, |
|
normalizer_params=batch_norm_params): |
|
net = slim.fully_connected(codes, 300, scope='fc1') |
|
batch_size = net.get_shape().as_list()[0] |
|
net = tf.reshape(net, [batch_size, 10, 10, 3]) |
|
|
|
net = slim.conv2d(net, 16, [3, 3], scope='conv1_1') |
|
net = slim.conv2d(net, 16, [3, 3], scope='conv1_2') |
|
|
|
output_size = [height, width] |
|
net = tf.image.resize_nearest_neighbor(net, output_size) |
|
|
|
with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]): |
|
net = slim.conv2d(net, 16, scope='conv2_1') |
|
net = slim.conv2d(net, channels, activation_fn=None, scope='conv2_2') |
|
|
|
return net |
|
|
|
|
|
|
|
|
|
|
|
def dann_mnist(images, |
|
weight_decay=0.0, |
|
prefix='model', |
|
num_classes=10, |
|
**kwargs): |
|
"""Creates a convolution MNIST model. |
|
|
|
Note that this model implements the architecture for MNIST proposed in: |
|
Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN), |
|
JMLR 2015 |
|
|
|
Args: |
|
images: the MNIST digits, a tensor of size [batch_size, 28, 28, 1]. |
|
weight_decay: the value for the weight decay coefficient. |
|
prefix: name of the model to use when prefixing tags. |
|
num_classes: the number of output classes to use. |
|
**kwargs: Placeholder for keyword arguments used by other shared encoders. |
|
|
|
Returns: |
|
the output logits, a tensor of size [batch_size, num_classes]. |
|
a dictionary with key/values the layer names and tensors. |
|
""" |
|
end_points = {} |
|
|
|
with slim.arg_scope( |
|
[slim.conv2d, slim.fully_connected], |
|
weights_regularizer=slim.l2_regularizer(weight_decay), |
|
activation_fn=tf.nn.relu,): |
|
with slim.arg_scope([slim.conv2d], padding='SAME'): |
|
end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1') |
|
end_points['pool1'] = slim.max_pool2d( |
|
end_points['conv1'], [2, 2], 2, scope='pool1') |
|
end_points['conv2'] = slim.conv2d( |
|
end_points['pool1'], 48, [5, 5], scope='conv2') |
|
end_points['pool2'] = slim.max_pool2d( |
|
end_points['conv2'], [2, 2], 2, scope='pool2') |
|
end_points['fc3'] = slim.fully_connected( |
|
slim.flatten(end_points['pool2']), 100, scope='fc3') |
|
end_points['fc4'] = slim.fully_connected( |
|
slim.flatten(end_points['fc3']), 100, scope='fc4') |
|
|
|
logits = slim.fully_connected( |
|
end_points['fc4'], num_classes, activation_fn=None, scope='fc5') |
|
|
|
return logits, end_points |
|
|
|
|
|
def dann_svhn(images, |
|
weight_decay=0.0, |
|
prefix='model', |
|
num_classes=10, |
|
**kwargs): |
|
"""Creates the convolutional SVHN model. |
|
|
|
Note that this model implements the architecture for MNIST proposed in: |
|
Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN), |
|
JMLR 2015 |
|
|
|
Args: |
|
images: the SVHN digits, a tensor of size [batch_size, 32, 32, 3]. |
|
weight_decay: the value for the weight decay coefficient. |
|
prefix: name of the model to use when prefixing tags. |
|
num_classes: the number of output classes to use. |
|
**kwargs: Placeholder for keyword arguments used by other shared encoders. |
|
|
|
Returns: |
|
the output logits, a tensor of size [batch_size, num_classes]. |
|
a dictionary with key/values the layer names and tensors. |
|
""" |
|
|
|
end_points = {} |
|
|
|
with slim.arg_scope( |
|
[slim.conv2d, slim.fully_connected], |
|
weights_regularizer=slim.l2_regularizer(weight_decay), |
|
activation_fn=tf.nn.relu,): |
|
with slim.arg_scope([slim.conv2d], padding='SAME'): |
|
|
|
end_points['conv1'] = slim.conv2d(images, 64, [5, 5], scope='conv1') |
|
end_points['pool1'] = slim.max_pool2d( |
|
end_points['conv1'], [3, 3], 2, scope='pool1') |
|
end_points['conv2'] = slim.conv2d( |
|
end_points['pool1'], 64, [5, 5], scope='conv2') |
|
end_points['pool2'] = slim.max_pool2d( |
|
end_points['conv2'], [3, 3], 2, scope='pool2') |
|
end_points['conv3'] = slim.conv2d( |
|
end_points['pool2'], 128, [5, 5], scope='conv3') |
|
|
|
end_points['fc3'] = slim.fully_connected( |
|
slim.flatten(end_points['conv3']), 3072, scope='fc3') |
|
end_points['fc4'] = slim.fully_connected( |
|
slim.flatten(end_points['fc3']), 2048, scope='fc4') |
|
|
|
logits = slim.fully_connected( |
|
end_points['fc4'], num_classes, activation_fn=None, scope='fc5') |
|
|
|
return logits, end_points |
|
|
|
|
|
def dann_gtsrb(images, |
|
weight_decay=0.0, |
|
prefix='model', |
|
num_classes=43, |
|
**kwargs): |
|
"""Creates the convolutional GTSRB model. |
|
|
|
Note that this model implements the architecture for MNIST proposed in: |
|
Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN), |
|
JMLR 2015 |
|
|
|
Args: |
|
images: the GTSRB images, a tensor of size [batch_size, 40, 40, 3]. |
|
weight_decay: the value for the weight decay coefficient. |
|
prefix: name of the model to use when prefixing tags. |
|
num_classes: the number of output classes to use. |
|
**kwargs: Placeholder for keyword arguments used by other shared encoders. |
|
|
|
Returns: |
|
the output logits, a tensor of size [batch_size, num_classes]. |
|
a dictionary with key/values the layer names and tensors. |
|
""" |
|
|
|
end_points = {} |
|
|
|
with slim.arg_scope( |
|
[slim.conv2d, slim.fully_connected], |
|
weights_regularizer=slim.l2_regularizer(weight_decay), |
|
activation_fn=tf.nn.relu,): |
|
with slim.arg_scope([slim.conv2d], padding='SAME'): |
|
|
|
end_points['conv1'] = slim.conv2d(images, 96, [5, 5], scope='conv1') |
|
end_points['pool1'] = slim.max_pool2d( |
|
end_points['conv1'], [2, 2], 2, scope='pool1') |
|
end_points['conv2'] = slim.conv2d( |
|
end_points['pool1'], 144, [3, 3], scope='conv2') |
|
end_points['pool2'] = slim.max_pool2d( |
|
end_points['conv2'], [2, 2], 2, scope='pool2') |
|
end_points['conv3'] = slim.conv2d( |
|
end_points['pool2'], 256, [5, 5], scope='conv3') |
|
end_points['pool3'] = slim.max_pool2d( |
|
end_points['conv3'], [2, 2], 2, scope='pool3') |
|
|
|
end_points['fc3'] = slim.fully_connected( |
|
slim.flatten(end_points['pool3']), 512, scope='fc3') |
|
|
|
logits = slim.fully_connected( |
|
end_points['fc3'], num_classes, activation_fn=None, scope='fc4') |
|
|
|
return logits, end_points |
|
|
|
|
|
def dsn_cropped_linemod(images, |
|
weight_decay=0.0, |
|
prefix='model', |
|
num_classes=11, |
|
batch_norm_params=None, |
|
is_training=False): |
|
"""Creates the convolutional pose estimation model for Cropped Linemod. |
|
|
|
Args: |
|
images: the Cropped Linemod samples, a tensor of size |
|
[batch_size, 64, 64, 4]. |
|
weight_decay: the value for the weight decay coefficient. |
|
prefix: name of the model to use when prefixing tags. |
|
num_classes: the number of output classes to use. |
|
batch_norm_params: a dictionary that maps batch norm parameter names to |
|
values. |
|
is_training: specifies whether or not we're currently training the model. |
|
This variable will determine the behaviour of the dropout layer. |
|
|
|
Returns: |
|
the output logits, a tensor of size [batch_size, num_classes]. |
|
a dictionary with key/values the layer names and tensors. |
|
""" |
|
|
|
end_points = {} |
|
|
|
tf.summary.image('{}/input_images'.format(prefix), images) |
|
with slim.arg_scope( |
|
[slim.conv2d, slim.fully_connected], |
|
weights_regularizer=slim.l2_regularizer(weight_decay), |
|
activation_fn=tf.nn.relu, |
|
normalizer_fn=slim.batch_norm if batch_norm_params else None, |
|
normalizer_params=batch_norm_params): |
|
with slim.arg_scope([slim.conv2d], padding='SAME'): |
|
end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1') |
|
end_points['pool1'] = slim.max_pool2d( |
|
end_points['conv1'], [2, 2], 2, scope='pool1') |
|
end_points['conv2'] = slim.conv2d( |
|
end_points['pool1'], 64, [5, 5], scope='conv2') |
|
end_points['pool2'] = slim.max_pool2d( |
|
end_points['conv2'], [2, 2], 2, scope='pool2') |
|
net = slim.flatten(end_points['pool2']) |
|
end_points['fc3'] = slim.fully_connected(net, 128, scope='fc3') |
|
net = slim.dropout( |
|
end_points['fc3'], 0.5, is_training=is_training, scope='dropout') |
|
|
|
with tf.variable_scope('quaternion_prediction'): |
|
predicted_quaternion = slim.fully_connected( |
|
net, 4, activation_fn=tf.nn.tanh) |
|
predicted_quaternion = tf.nn.l2_normalize(predicted_quaternion, 1) |
|
logits = slim.fully_connected( |
|
net, num_classes, activation_fn=None, scope='fc4') |
|
end_points['quaternion_pred'] = predicted_quaternion |
|
|
|
return logits, end_points |
|
|