NCTCMumbai's picture
Upload 2583 files
97b6013 verified
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains different architectures for the different DSN parts.
We define here the modules that can be used in the different parts of the DSN
model.
- shared encoder (dsn_cropped_linemod, dann_xxxx)
- private encoder (default_encoder)
- decoder (large_decoder, gtsrb_decoder, small_decoder)
"""
import tensorflow as tf
#from models.domain_adaptation.domain_separation
import utils
slim = tf.contrib.slim
def default_batch_norm_params(is_training=False):
"""Returns default batch normalization parameters for DSNs.
Args:
is_training: whether or not the model is training.
Returns:
a dictionary that maps batch norm parameter names (strings) to values.
"""
return {
# Decay for the moving averages.
'decay': 0.5,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
'is_training': is_training
}
################################################################################
# PRIVATE ENCODERS
################################################################################
def default_encoder(images, code_size, batch_norm_params=None,
weight_decay=0.0):
"""Encodes the given images to codes of the given size.
Args:
images: a tensor of size [batch_size, height, width, 1].
code_size: the number of hidden units in the code layer of the classifier.
batch_norm_params: a dictionary that maps batch norm parameter names to
values.
weight_decay: the value for the weight decay coefficient.
Returns:
end_points: the code of the input.
"""
end_points = {}
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.conv2d], kernel_size=[5, 5], padding='SAME'):
net = slim.conv2d(images, 32, scope='conv1')
net = slim.max_pool2d(net, [2, 2], 2, scope='pool1')
net = slim.conv2d(net, 64, scope='conv2')
net = slim.max_pool2d(net, [2, 2], 2, scope='pool2')
net = slim.flatten(net)
end_points['flatten'] = net
net = slim.fully_connected(net, code_size, scope='fc1')
end_points['fc3'] = net
return end_points
################################################################################
# DECODERS
################################################################################
def large_decoder(codes,
height,
width,
channels,
batch_norm_params=None,
weight_decay=0.0):
"""Decodes the codes to a fixed output size.
Args:
codes: a tensor of size [batch_size, code_size].
height: the height of the output images.
width: the width of the output images.
channels: the number of the output channels.
batch_norm_params: a dictionary that maps batch norm parameter names to
values.
weight_decay: the value for the weight decay coefficient.
Returns:
recons: the reconstruction tensor of shape [batch_size, height, width, 3].
"""
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
net = slim.fully_connected(codes, 600, scope='fc1')
batch_size = net.get_shape().as_list()[0]
net = tf.reshape(net, [batch_size, 10, 10, 6])
net = slim.conv2d(net, 32, [5, 5], scope='conv1_1')
net = tf.image.resize_nearest_neighbor(net, (16, 16))
net = slim.conv2d(net, 32, [5, 5], scope='conv2_1')
net = tf.image.resize_nearest_neighbor(net, (32, 32))
net = slim.conv2d(net, 32, [5, 5], scope='conv3_2')
output_size = [height, width]
net = tf.image.resize_nearest_neighbor(net, output_size)
with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]):
net = slim.conv2d(net, channels, activation_fn=None, scope='conv4_1')
return net
def gtsrb_decoder(codes,
height,
width,
channels,
batch_norm_params=None,
weight_decay=0.0):
"""Decodes the codes to a fixed output size. This decoder is specific to GTSRB
Args:
codes: a tensor of size [batch_size, 100].
height: the height of the output images.
width: the width of the output images.
channels: the number of the output channels.
batch_norm_params: a dictionary that maps batch norm parameter names to
values.
weight_decay: the value for the weight decay coefficient.
Returns:
recons: the reconstruction tensor of shape [batch_size, height, width, 3].
Raises:
ValueError: When the input code size is not 100.
"""
batch_size, code_size = codes.get_shape().as_list()
if code_size != 100:
raise ValueError('The code size used as an input to the GTSRB decoder is '
'expected to be 100.')
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
net = codes
net = tf.reshape(net, [batch_size, 10, 10, 1])
net = slim.conv2d(net, 32, [3, 3], scope='conv1_1')
# First upsampling 20x20
net = tf.image.resize_nearest_neighbor(net, [20, 20])
net = slim.conv2d(net, 32, [3, 3], scope='conv2_1')
output_size = [height, width]
# Final upsampling 40 x 40
net = tf.image.resize_nearest_neighbor(net, output_size)
with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]):
net = slim.conv2d(net, 16, scope='conv3_1')
net = slim.conv2d(net, channels, activation_fn=None, scope='conv3_2')
return net
def small_decoder(codes,
height,
width,
channels,
batch_norm_params=None,
weight_decay=0.0):
"""Decodes the codes to a fixed output size.
Args:
codes: a tensor of size [batch_size, code_size].
height: the height of the output images.
width: the width of the output images.
channels: the number of the output channels.
batch_norm_params: a dictionary that maps batch norm parameter names to
values.
weight_decay: the value for the weight decay coefficient.
Returns:
recons: the reconstruction tensor of shape [batch_size, height, width, 3].
"""
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
net = slim.fully_connected(codes, 300, scope='fc1')
batch_size = net.get_shape().as_list()[0]
net = tf.reshape(net, [batch_size, 10, 10, 3])
net = slim.conv2d(net, 16, [3, 3], scope='conv1_1')
net = slim.conv2d(net, 16, [3, 3], scope='conv1_2')
output_size = [height, width]
net = tf.image.resize_nearest_neighbor(net, output_size)
with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]):
net = slim.conv2d(net, 16, scope='conv2_1')
net = slim.conv2d(net, channels, activation_fn=None, scope='conv2_2')
return net
################################################################################
# SHARED ENCODERS
################################################################################
def dann_mnist(images,
weight_decay=0.0,
prefix='model',
num_classes=10,
**kwargs):
"""Creates a convolution MNIST model.
Note that this model implements the architecture for MNIST proposed in:
Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN),
JMLR 2015
Args:
images: the MNIST digits, a tensor of size [batch_size, 28, 28, 1].
weight_decay: the value for the weight decay coefficient.
prefix: name of the model to use when prefixing tags.
num_classes: the number of output classes to use.
**kwargs: Placeholder for keyword arguments used by other shared encoders.
Returns:
the output logits, a tensor of size [batch_size, num_classes].
a dictionary with key/values the layer names and tensors.
"""
end_points = {}
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
activation_fn=tf.nn.relu,):
with slim.arg_scope([slim.conv2d], padding='SAME'):
end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1')
end_points['pool1'] = slim.max_pool2d(
end_points['conv1'], [2, 2], 2, scope='pool1')
end_points['conv2'] = slim.conv2d(
end_points['pool1'], 48, [5, 5], scope='conv2')
end_points['pool2'] = slim.max_pool2d(
end_points['conv2'], [2, 2], 2, scope='pool2')
end_points['fc3'] = slim.fully_connected(
slim.flatten(end_points['pool2']), 100, scope='fc3')
end_points['fc4'] = slim.fully_connected(
slim.flatten(end_points['fc3']), 100, scope='fc4')
logits = slim.fully_connected(
end_points['fc4'], num_classes, activation_fn=None, scope='fc5')
return logits, end_points
def dann_svhn(images,
weight_decay=0.0,
prefix='model',
num_classes=10,
**kwargs):
"""Creates the convolutional SVHN model.
Note that this model implements the architecture for MNIST proposed in:
Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN),
JMLR 2015
Args:
images: the SVHN digits, a tensor of size [batch_size, 32, 32, 3].
weight_decay: the value for the weight decay coefficient.
prefix: name of the model to use when prefixing tags.
num_classes: the number of output classes to use.
**kwargs: Placeholder for keyword arguments used by other shared encoders.
Returns:
the output logits, a tensor of size [batch_size, num_classes].
a dictionary with key/values the layer names and tensors.
"""
end_points = {}
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
activation_fn=tf.nn.relu,):
with slim.arg_scope([slim.conv2d], padding='SAME'):
end_points['conv1'] = slim.conv2d(images, 64, [5, 5], scope='conv1')
end_points['pool1'] = slim.max_pool2d(
end_points['conv1'], [3, 3], 2, scope='pool1')
end_points['conv2'] = slim.conv2d(
end_points['pool1'], 64, [5, 5], scope='conv2')
end_points['pool2'] = slim.max_pool2d(
end_points['conv2'], [3, 3], 2, scope='pool2')
end_points['conv3'] = slim.conv2d(
end_points['pool2'], 128, [5, 5], scope='conv3')
end_points['fc3'] = slim.fully_connected(
slim.flatten(end_points['conv3']), 3072, scope='fc3')
end_points['fc4'] = slim.fully_connected(
slim.flatten(end_points['fc3']), 2048, scope='fc4')
logits = slim.fully_connected(
end_points['fc4'], num_classes, activation_fn=None, scope='fc5')
return logits, end_points
def dann_gtsrb(images,
weight_decay=0.0,
prefix='model',
num_classes=43,
**kwargs):
"""Creates the convolutional GTSRB model.
Note that this model implements the architecture for MNIST proposed in:
Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN),
JMLR 2015
Args:
images: the GTSRB images, a tensor of size [batch_size, 40, 40, 3].
weight_decay: the value for the weight decay coefficient.
prefix: name of the model to use when prefixing tags.
num_classes: the number of output classes to use.
**kwargs: Placeholder for keyword arguments used by other shared encoders.
Returns:
the output logits, a tensor of size [batch_size, num_classes].
a dictionary with key/values the layer names and tensors.
"""
end_points = {}
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
activation_fn=tf.nn.relu,):
with slim.arg_scope([slim.conv2d], padding='SAME'):
end_points['conv1'] = slim.conv2d(images, 96, [5, 5], scope='conv1')
end_points['pool1'] = slim.max_pool2d(
end_points['conv1'], [2, 2], 2, scope='pool1')
end_points['conv2'] = slim.conv2d(
end_points['pool1'], 144, [3, 3], scope='conv2')
end_points['pool2'] = slim.max_pool2d(
end_points['conv2'], [2, 2], 2, scope='pool2')
end_points['conv3'] = slim.conv2d(
end_points['pool2'], 256, [5, 5], scope='conv3')
end_points['pool3'] = slim.max_pool2d(
end_points['conv3'], [2, 2], 2, scope='pool3')
end_points['fc3'] = slim.fully_connected(
slim.flatten(end_points['pool3']), 512, scope='fc3')
logits = slim.fully_connected(
end_points['fc3'], num_classes, activation_fn=None, scope='fc4')
return logits, end_points
def dsn_cropped_linemod(images,
weight_decay=0.0,
prefix='model',
num_classes=11,
batch_norm_params=None,
is_training=False):
"""Creates the convolutional pose estimation model for Cropped Linemod.
Args:
images: the Cropped Linemod samples, a tensor of size
[batch_size, 64, 64, 4].
weight_decay: the value for the weight decay coefficient.
prefix: name of the model to use when prefixing tags.
num_classes: the number of output classes to use.
batch_norm_params: a dictionary that maps batch norm parameter names to
values.
is_training: specifies whether or not we're currently training the model.
This variable will determine the behaviour of the dropout layer.
Returns:
the output logits, a tensor of size [batch_size, num_classes].
a dictionary with key/values the layer names and tensors.
"""
end_points = {}
tf.summary.image('{}/input_images'.format(prefix), images)
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm if batch_norm_params else None,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.conv2d], padding='SAME'):
end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1')
end_points['pool1'] = slim.max_pool2d(
end_points['conv1'], [2, 2], 2, scope='pool1')
end_points['conv2'] = slim.conv2d(
end_points['pool1'], 64, [5, 5], scope='conv2')
end_points['pool2'] = slim.max_pool2d(
end_points['conv2'], [2, 2], 2, scope='pool2')
net = slim.flatten(end_points['pool2'])
end_points['fc3'] = slim.fully_connected(net, 128, scope='fc3')
net = slim.dropout(
end_points['fc3'], 0.5, is_training=is_training, scope='dropout')
with tf.variable_scope('quaternion_prediction'):
predicted_quaternion = slim.fully_connected(
net, 4, activation_fn=tf.nn.tanh)
predicted_quaternion = tf.nn.l2_normalize(predicted_quaternion, 1)
logits = slim.fully_connected(
net, num_classes, activation_fn=None, scope='fc4')
end_points['quaternion_pred'] = predicted_quaternion
return logits, end_points