NCTCMumbai's picture
Upload 2583 files
97b6013 verified
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Provides data from video object segmentation datasets.
This file provides both images and annotations (instance segmentations) for
TensorFlow. Currently, we support the following datasets:
1. DAVIS 2017 (https://davischallenge.org/davis2017/code.html).
2. DAVIS 2016 (https://davischallenge.org/davis2016/code.html).
3. YouTube-VOS (https://youtube-vos.org/dataset/download).
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os.path
import tensorflow as tf
from feelvos.datasets import tfsequence_example_decoder
slim = tf.contrib.slim
dataset = slim.dataset
tfexample_decoder = slim.tfexample_decoder
_ITEMS_TO_DESCRIPTIONS = {
'image': 'A color image of varying height and width.',
'labels_class': ('A semantic segmentation label whose size matches image.'
'Its values range from 0 (background) to num_classes.'),
}
# Named tuple to describe the dataset properties.
DatasetDescriptor = collections.namedtuple(
'DatasetDescriptor',
['splits_to_sizes', # Splits of the dataset into training, val, and test.
'num_classes', # Number of semantic classes.
'ignore_label', # Ignore label value.
]
)
_DAVIS_2016_INFORMATION = DatasetDescriptor(
splits_to_sizes={'train': [30, 1830],
'val': [20, 1376]},
num_classes=2,
ignore_label=255,
)
_DAVIS_2017_INFORMATION = DatasetDescriptor(
splits_to_sizes={'train': [60, 4219],
'val': [30, 2023],
'test-dev': [30, 2037]},
num_classes=None, # Number of instances per videos differ.
ignore_label=255,
)
_YOUTUBE_VOS_2018_INFORMATION = DatasetDescriptor(
# Leave these sizes as None to allow for different splits into
# training and validation sets.
splits_to_sizes={'train': [None, None],
'val': [None, None]},
num_classes=None, # Number of instances per video differs.
ignore_label=255,
)
_DATASETS_INFORMATION = {
'davis_2016': _DAVIS_2016_INFORMATION,
'davis_2017': _DAVIS_2017_INFORMATION,
'youtube_vos_2018': _YOUTUBE_VOS_2018_INFORMATION,
}
# Default file pattern of SSTable. Note we include '-' to avoid the confusion
# between `train-` and `trainval-` sets.
_FILE_PATTERN = '%s-*'
def get_dataset(dataset_name,
split_name,
dataset_dir,
file_pattern=None,
data_type='tf_sequence_example',
decode_video_frames=False):
"""Gets an instance of slim Dataset.
Args:
dataset_name: String, dataset name.
split_name: String, the train/val Split name.
dataset_dir: String, the directory of the dataset sources.
file_pattern: String, file pattern of SSTable.
data_type: String, data type. Currently supports 'tf_example' and
'annotated_image'.
decode_video_frames: Boolean, decode the images or not. Not decoding it here
is useful if we subsample later
Returns:
An instance of slim Dataset.
Raises:
ValueError: If the dataset_name or split_name is not recognized, or if
the dataset_type is not supported.
"""
if dataset_name not in _DATASETS_INFORMATION:
raise ValueError('The specified dataset is not supported yet.')
splits_to_sizes = _DATASETS_INFORMATION[dataset_name].splits_to_sizes
if split_name not in splits_to_sizes:
raise ValueError('data split name %s not recognized' % split_name)
# Prepare the variables for different datasets.
num_classes = _DATASETS_INFORMATION[dataset_name].num_classes
ignore_label = _DATASETS_INFORMATION[dataset_name].ignore_label
if file_pattern is None:
file_pattern = _FILE_PATTERN
file_pattern = os.path.join(dataset_dir, file_pattern % split_name)
if data_type == 'tf_sequence_example':
keys_to_context_features = {
'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/height': tf.FixedLenFeature((), tf.int64, default_value=0),
'image/width': tf.FixedLenFeature((), tf.int64, default_value=0),
'segmentation/object/format': tf.FixedLenFeature(
(), tf.string, default_value='png'),
'video_id': tf.FixedLenFeature((), tf.string, default_value='unknown')
}
label_name = 'class' if dataset_name == 'davis_2016' else 'object'
keys_to_sequence_features = {
'image/encoded': tf.FixedLenSequenceFeature((), dtype=tf.string),
'segmentation/{}/encoded'.format(label_name):
tf.FixedLenSequenceFeature((), tf.string),
'segmentation/{}/encoded'.format(label_name):
tf.FixedLenSequenceFeature((), tf.string),
}
items_to_handlers = {
'height': tfexample_decoder.Tensor('image/height'),
'width': tfexample_decoder.Tensor('image/width'),
'video_id': tfexample_decoder.Tensor('video_id')
}
if decode_video_frames:
decode_image_handler = tfexample_decoder.Image(
image_key='image/encoded',
format_key='image/format',
channels=3,
repeated=True)
items_to_handlers['image'] = decode_image_handler
decode_label_handler = tfexample_decoder.Image(
image_key='segmentation/{}/encoded'.format(label_name),
format_key='segmentation/{}/format'.format(label_name),
channels=1,
repeated=True)
items_to_handlers['labels_class'] = decode_label_handler
else:
items_to_handlers['image/encoded'] = tfexample_decoder.Tensor(
'image/encoded')
items_to_handlers[
'segmentation/object/encoded'] = tfexample_decoder.Tensor(
'segmentation/{}/encoded'.format(label_name))
decoder = tfsequence_example_decoder.TFSequenceExampleDecoder(
keys_to_context_features, keys_to_sequence_features, items_to_handlers)
else:
raise ValueError('Unknown data type.')
size = splits_to_sizes[split_name]
if isinstance(size, collections.Sequence):
num_videos = size[0]
num_samples = size[1]
else:
num_videos = 0
num_samples = size
return dataset.Dataset(
data_sources=file_pattern,
reader=tf.TFRecordReader,
decoder=decoder,
num_samples=num_samples,
num_videos=num_videos,
items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
ignore_label=ignore_label,
num_classes=num_classes,
name=dataset_name,
multi_label=True)